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 Abstract  

A Networked Control System (NCS) is a control system in which actuation and feedback 
signals are transmitted over a communication network. One of the key challenges in NCS 
is the presence of random delays introduced by the communication protocol. This study 
proposes an adaptive approach for tuning the integral gain (Kint) of the Linear Quadratic 
Integral (LQI) controller, based on both the current delay state and a predicted delay 
obtained via a Markov chain model, which has not been explored extensively. The 
proposed method first maps each delay interval to a corresponding Kint, establishing a 
delay–gain pair. Then, the integral gain is dynamically updated at each control cycle by 
combining the current (Kint_t) and the predicted Kint for the next time step (Kint_t+1), using 
weighted coefficients a and b, respectively, as follows: Kint = a* Kint_t + b* Kint_t+1. 
Experimental validation demonstrates that, with optimal weights a=0.5 and b=0.5, the 
proposed method significantly improves system performance. Compared to a fixed 
(static) Kint, it reduces the percentage overshoot from 17.06% to 2.45% and decreases the 
settling time from 457.6 seconds to 254.06 seconds. 

Keywords: network control system, Stochastic, Linear Quadratic Integral, integral gain, delay 
time. 
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 Abstrak  

Sistem kendali berjaringan (NCS) merupakan sistem kendali yang mana sinyal umpan balik 
dan sinyal aktuasi dikirimkan melalui jaringan komunikasi. Salah satu tantangan NCS 
adalah waktu tunda yang acak yang disebabkan oleh protokol jaringan komunikasi. 
Penelitian ini mengusulkan adaptif integral gain (Kint) kendali LQI berdasarkan waktu 
tunda terukur dan waktu tunda yang diprediksi oleh Markov chain, yang mana metode ini 
belum banyak diteliti lebih jauh. Pertama-tama, Kint ditentukan berdasarkan setiap 
rentang waktu tunda sehingga diperoleh pasangan nilai waktu tunda dan Kint. Selanjutnya, 
untuk setiap nilai Kint dari waktu tunda yang terukur (Kint_t) dan Kint dari waktu tunda yang 
diprediksi (Kint_t+1), dikombinasikan dengan memberikan bobot a dan b sehingga total Kint 
untuk setiap siklus perhitungan adalah Kint = a* Kint_t + b* Kint_t+1. Hasil pengujian 
menunjukkan dengan bobot optimal a dan b adalah 0,5, dan dibandingkan Kint tetap 
(statis), metode stokastik LQI dapat mengurangi % overshoot dari 17.06% ke 2,45% dan 
settling time dari 457,6 ke 254,06 detik. 

Kata Kunci:   sistem kontrol jaringan, Stochastic, Linear Quadratic Integral, integral gain, waktu 
tunda. 
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1. INTRODUCTION  

A Networked Control System (NCS) is a 

distributed control system that contains 

controlled objects such as sensors, controllers, 

actuators, and other components where system 

information and control signals (inputs, outputs) 

are transmitted over a communication network. 

Problems in NCS include random delay, and 

packet loss (Lian, Zhang and Li, 2019; Xue, Yu and 

Wang, 2019; Zhang et al., 2019; Pang et al., 

2021). 

Several research have been conducted to find 

methods to overcome random delay. A study by 

Steinberger et al., introduced a discrete-time 

adaptive control method tailored for uncertain 

linear multivariable networked systems 

(Steinberger, Horn and Ferrara, 2022). Building on 

the concept of model reference adaptive control, 

the authors developed two adaptive laws to 

address the conservativeness often encountered 

when time delays are not explicitly known. Other 

researchers Nafir et al. (Nafir et al., 2021) and Ji 

et al., (Ji et al., 2018) used the theory of finite-

time stability combined with Linear Matrix 

Inequalities (LMIs), where the conditions for 

finite-time stabilization and boundedness on NCS 

with random delay were obtained from the LMIs 

method. This will result in an adequate finite-

time stabilization condition assuming no external 

disturbances and a finite-time boundedness 

condition obtained with external disturbances. 

Research on risk-sensitive control (RS) for 

linear systems with stochastic system parameters 

found that stochastic parameters cause problems 

in conventional RS control (Ito et al., 2019). 

Stochastic research is used in several methods in 

NCS. Among them is using the frequency domain 

(Zhou et al., 2017), where the Laplace 

transformation strategy is used to analyze random 

delay problems. Several researchers, used H∞ 

control for stochastic problems in NCS, where the 

Improved Free Weighting Matrix (IFWM) method 

was used to analyze robust stability problems and 

robust H∞ for nonlinear stochastic network control 

systems (Lu et al., 2018; Xie, Li and Xu, 2019; Lee 

et al., 2020; Lu, Deng and Zhou, 2020). 

Most existing studies on time delays in 

Networked Control Systems (NCS) treat the delay 

as an assumed parameter rather than a directly 

measured quantity. While a few works have 

attempted to quantify delays (Huang et al., 2022; 

Rsetam et al., 2025), they generally do not 

consider measurements within delay in Remote 

Terminal Units (RTUs) that integrate both sensors 

and plants. Furthermore, prior research has 

primarily focused on delay characterization 

without analyzing its impact on specific control 

strategies. These gaps present opportunities 

addressed in this study. Additionally, the 

integration of delay prediction techniques, such 

as Markov chains, with state-based control 

methods employing non-zero setpoints (e.g., 

Linear Quadratic Integral [LQI] control), remains 

an open and promising research direction. 

This research proposes method to solves the 

random delay problem by the Linear Quadratic 

Stochastic algorithm with Markov Chain. The first 

is to identify the plant model to get the value of 

the transfer function and state-space, the second 

is to add a state observer to suppress the error 

value from the modeling results and the original 

plant signal. The third is to get the appropriate Q 

and R values. The fourth is the Markov chain 

design to get the value of the transition matrix P, 

and the last is tuning the integral gain (Kint) 

parameter for a specific delay time range. The 

Kint is based on the measured delay time (Kint_t) 

and the predicted delay time (Kint_t+1) resulting 

from the stochastic process. 

2. METHODOLOGY 

The procedure carried out in this paper is 

first applied identification method to obtain a 

model of the plant system used, as shown in 

Figure 1. The second is to measure the Delay Time 

to determine the minimum and maximum delay 

induced by the network at the plant. The third is 

to find the appropriate Q and R values based on 

the performance index value. The fourth is to get 

the value of the transition matrix P from the 

stochastic process with the Markov Chain to 

predict the value of the next delay time. Finally, 

integral gain scheduling is performed after the 

four stages to obtain an adaptive integral gain 

(Kint) value. 
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Figure 1. Research procedure. 

2.1. Plant Structure 

Figure 2 depicts the system's block diagram. 

This research sets main functions such as 

controller program, delay measurement, sending 

a control signal, and receiving feedback signal in 

the Master Terminal Unit (MTU). All signals are 

transferred through ethernet protocol 

communication (using UDP). The sent control 

signal is then received by the Remote Terminal 

Unit (RTU), gained, and driven the plant (see 

Figure 3). The speed sensor is deployed as 

feedback and is sent back by RTU to MTU. 

 
Figure 2. System block diagram. 

 
Figure 3. Motor plant. 

Figure 4 depicts the proposed control 

structure. This research aims to find an 

appropriate control strategy as the delay over the 

network behaves randomly (not with a fixed 

sampling time). According to Figure 4, state-space 

parameters (A, B, C) are derived from the plant 

model. As the states are used in the control 

algorithm, a state observer (in the form of an L 

matrix) is added to estimate states corresponding 

to plant dynamics. The subsequent parameter, K, 

is obtained using a Linear Quadratic Regulator 

(LQR). The process design is evaluated using the 

cost function parameter (J-Fucntion). The 

remaining parameter, Kint, is the main factor to 

overcome the random delay. In this research, the 

proposed algorithm will adaptively change this 

parameter. 

2.2. Delay Time Measurement 

The delay time in the networked control 

system will be influenced by the delay in the data 

transmission process in each communication 

protocol used. The delay that will be used in this 

paper is the delay in sending manipulated value 

(MV) data from the master terminal unit (MTU) to 

the remote terminal unit (RTU) and sending PV 

data from the RTU to MTU, which affects the 

Delay Time in the control system using a network 

communication protocol, namely the User 

Datagram Protocol (UDP). 

The size of the delay value generated will 

affect the existing delay time in the control 

system, resulting in changes in the plant's 

transient response. Figure 5 shows the overall 

Delay Time measurement process in one looping 

program on a networked control system. 

The equation to get the Total Delay Time 

(TDM) is stated in equation (1). 

TDM =  TsMTU + T1 + TsRTU + T2       (1) 

where TsMTU is the sampling time of the Master 

Terminal Unit (MTU), T1 is the transmission delay 

when sending the MV signal, TsRTU is the Remote 

Terminal Unit (RTU) sampling time, and T2 is the 

transmission delay when sending the PV signal. 

The measurement process for T1 is calculated at 

the MTU, and for T2, it is at the RTU. 

2.3. Stochastic with Markov Chain 

According to the principle of a stochastic 

process with a Markov chain, the transition 

matrix, as stated in equation (2), is first 

introduced. In this matrix, the sum of each row 

must be equal to 1. 
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Figure 4. Control block diagram. 

 
Figure 5. Block diagram of delay time measurement. 

𝑃 = [

𝑃00 𝑃10 … 𝑃0𝑛

𝑃01 𝑃11 … 𝑃1𝑛

⋮ ⋮ ⋮ ⋮
𝑃𝑛0 𝑃𝑛1 … 𝑃𝑛𝑛

]             (2) 

In this research, the transition matrix P 

corresponds to the value of the time delay. The 

next probability of delay time, Pn, will be 

calculated using Equation (3). This equation shows 

that the prediction state vector (Pn) is obtained 

from the initial state vector value Pn-1 multiplied 

by the transition matrix P. The final predicted 

state vector is determined based on its largest 

vector value. 

Pn = Pn−1P        (3) 

2.4. Linear Quadratic Integral (LQI) 

As plant is non-zero setpoint, Linear 

Quadratic Integrator (LQI) is employed due to 

simplicity in input gain design (just weighting 

factor from error integration), instead of LQR 

using multiplication of several matrices. The 

structure of LQI used in this research is depicted 

in Figure 4. After determining the value of Kint (in 

the beginning, it is set constant), matrix Q, and R, 

the goal is to find matrix K, which is derived from 

equation (4), after finding P in equation (5). The 

evaluation is conducted by tuning matrix Q and R 

and measuring the cost function (J-function) as 

stated in equation (6). In this research, as a 

measurement standard, the J function is 

measured from the beginning of the system to the 

rise time (for the effective measurement, it is 

defined when the signal starts from 0 to 100%). 

K = R−1BTP         (4) 

ATP + PA − PBR−1BTP + Q = 0       (5) 

J = ∫ (xTQx + uTRu)dt
Tr

0
                   (6) 

2.5. Gain scheduling of Integral Gain (Kint) 

In control methods implemented on digital or 

embedded systems, the execution of control 

algorithms requires sampling time values. 

However, in Networked Control Systems (NCS), 

these values can vary randomly, potentially 

degrading control performance. To mitigate this 

effect, one approach is to predict the delay and 

compensate for it by adaptively adjusting the 

integral gain (Kint) in the Linear Quadratic Integral 

(LQI) controller. 

In this study, the stochastic delay time 

corresponds to the integral gain (Kint). In the LQI 

method, the simplest component to modify is the 

integral gain (Kint), rather than the state feedback 

gain (K), which is typically obtained by tuning the
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Q-R matrices and solving the Algebraic Riccati 

Equation (ARE). The integral gain functions as a 

linear scalar, and its selection in this study is 

based on a trial-and-error approach, which 

revealed a correlation between (Kint) and the 

system response. Historically, in the original LQI 

method, such gains are often tuned manually. 

This research proposes equation (7) to obtain 

the Kint of LQI, where Kint_t is the integral gain 

according to the latest measured delay, and Kint_t+1 

is the integral gain predicted by the method. This 

method also introduces the weighting of both 

integral gains. Both variables, a and b, are 

manually tuned to obtain the best control 

response (overshoot, rise time, settling time, 

error steady-state). 

Kint = a*Kint_t + b*Kint_t+1        (7) 

3. RESULTS AND DISCUSSION 

3.1. Model Plant 

The model plant was derived by the 

identification method as a state in Equation (8) 

for the Laplace form and Equations (9) and (10) 

for the state-space form.  

G(s) =
45.29

s2+72.45s+95.45
         (8) 

[
𝑥̇1

𝑥̇2
] = [

−72.45 −95.45
1 0

] [
𝑥1

𝑥2
] + [

1
0
] u    (9) 

y = [0 45.29] [
𝑥1

𝑥2
]                   (10) 

3.2. Parameter Tuning Results   

To find the appropriate matrix Q and R, the 

experiment is first conducted using the same 

integral gain (Kint); here, it is 0. 004. Table 1 

shows the results of the tuning values for 

combination parameters (Q11, Q22, R). The chosen 

matrices are based on their lowest J-Function. 

The response result shown in Figure 6 with 

%Overshoot (%OS) = 17.06%, rise time 

(Tr)=167.44s, settling Time (Ts)=457.6s, and Error 

steady state (ess)=0%. 

After getting the values of the Q and R 

parameters, the next step is to find the integral 

gain (Kint) parameter value for a specific delay 

time range. Table 2 below is a set of Kint for 

specific delay ranges. 

Table 1. Linear Quadratic Interal (LQI) parameter 

tuning results. 

Tuned 

parameters 

State feedback 

gain J- 

Function [q11 q12; 

q21 q22] 
R K11 K12 

[1 0;0 1] 1 0.007 0.0052 1180 

[1 0;0 1.5] 1 0.007 0.0079 1267 

[1 0;0 2] 1 0.007 0.0105 1233 

[0.5 0;0 2] 2 0.0018 0.0052 2451 

[0.5 0;0 3] 2 0.0018 0.0079 2447 

[1 0;0 3] 2 0.0036 0.0079 2445 

[2 0;0 5] 3 0.0047 0.0087 3707 

[2 0;0 0.5] 2 0.0069 0.0013 2347 

[2 0;0 1] 2 0.0069 0.0026 2498 

Table 2. Kint with a specific range of delay time. 

Range Kint 
Transient Response 

OS (%) Tr (s) Ts (s) ess 

31 - 32 0.00017 7.11 213.37 515.68 0 

33 - 34 0.0002 11.18 160.83 430.75 0 

35 - 36 0.00023 12.88 177.95 503.03 0 

37 - 39 0.00015 17.06 234.87 230.15 0 

3.3. Stochastic LQI 

Table 3 is a random delay obtained from 

measurement. The state changes in delay time 

are 31, 32, 33, 34, 35, 36, 37, 38, and 39. These 

will be then mapped to XTs1 (when the delay is 31 

ms) and to XTs9 (when the delay value is 39 ms). 

Table 4 shows the frequency value of the state 

changes that occur. According to the probability 

matrix rule (the sum of each row equals 1), Table 

5 is the transition matrix used. 

The transition matrix is arranged based on the 

value of the frequency of state changes and the 

probability Pij. According to Table 5, the 

transition matrix P is obtained as follows: 

𝑃 =

[
 
 
 
 
 
 
 
 

0 0 0.5 0.5 0 0 0 0 0
0 1 0 0 0 0 0 0 0

0.2 0.2 0.2 0.2 0 0 0 0 0 
0 0 0.14 0 0 0.57 0 0.14 0.14
0 0 0 0 0.24 0.21 0.21 0.29 0.06
0 0 0 0 0.14 0.43 0.24 0.16 0.03
0 0 0 0.05 0.13 0.36 0.25 0.2 0.02
0 0 0 0 0.07 0.39 0.5 0.04 0
0 0 0 0 0.27 0.27 0.36 0.09 0 ]
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Figure 6. LQI control response with K11 = 0.007 and K12 = 0.0052 

Table 3. Consecutive delay measurement. 

nth-
measurement 

delay (ms) 

1-20 31 33 32 32 33 34 33 33 33 31 34 38 36 37 37 38 37 38 35 37 

21-40 36 38 36 36 36 38 36 36 38 37 37 39 37 37 34 36 37 39 36 36 

41-60 37 38 37 36 36 37 37 36 35 36 37 36 36 38 36 38 35 36 38 35 

61-80 35 39 36 36 37 38 37 37 35 36 39 37 36 35 38 37 35 38 36 37 

81-100 36 36 37 38 36 38 36 36 35 36 35 38 36 37 37 36 36 38 38 34 

101-120 39 37 36 36 39 38 36 36 35 38 36 35 35 37 36 36 37 38 37 36 

121-140 38 36 36 36 36 36 36 36 38 37 36 35 38 36 38 37 38 37 34 36 

141-160 37 36 36 36 36 36 38 37 37 38 36 36 38 37 37 35 36 37 35 35 

161-180 37 36 37 38 36 37 36 36 36 38 37 36 37 38 37 36 38 36 37 36 

181-200 36 35 38 36 36 36 37 35 36 38 35 37 37 37 36 35 37 36 36 37 

201-220 38 37 37 39 35 37 37 37 37 36 36 36 35 38 37 35 38 37 36 36 

221-240 38 37 35 39 37 36 35 36 37 35 37 38 37 34 36 36 38 36 36 36 

241-260 36 38 36 35 38 38 36 37 36 39 35 37 38 37 35 35 38 37 36 35 

261-280 35 37 37 37 35 35 36 36 35 39 36 37 34 36 37 37 36 35 37 38 

281-300 37 37 36 36 36 37 37 35 35 39 35 35 36 37 35 38 37 36 36 38 

Table 4. State change frequency. 

 XTs1 XTs2 XTs3 XTs4 XTs5 XTs6 XTs7 XTs8 XTs9 

XTs1 0 0 1 1 0 0 0 0 0 

XTs2 0 1 0 0 0 0 0 0 0 

XTs3 1 1 1 1 0 1 0 0 0 

XTs4 0 0 1 0 0 4 0 1 1 

XTs5 0 0 0 0 8 7 7 10 2 

XTs6 0 0 0 0 10 30 17 11 2 

XTs7 0 0 0 3 8 22 15 12 1 

XTs8 0 0 0 0 3 18 23 2 0 

XTs9 0 0 0 0 3 3 4 1 0 

Table 5. Probability of Pij. 

 XTs1 XTs2 XTs3 XTs4 XTs5 XTs6 XTs7 XTs8 XTs9 

XTs1 0 0 0.50 0.50 0 0 0 0 0 
XTs2 0 1 0 0 0 0 0 0 0 
XTs3 0.20 0.20 0.20 0.20 0 0.20 0 0 0 
XTs4 0 0 0.14 0 0 0.57 0 0.14 0.14 
XTs5 0 0 0 0 0.24 0.21 0.21 0.29 0.06 
XTs6 0 0 0 0 0.14 0.43 0.24 0.16 0.03 
XTs7 0 0 0 0.05 0.13 0.36 0.25 0.20 0.02 
XTs8 0 0 0 0 0.07 0,39 0.50 0.04 0 
XTs9 0 0 0 0 0.27 0.27 0.36 0.09 0 
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An example of a verification experiment has 

been conducted based on equation (3). With P0 = 

[0.07 0.13 0.53 0.13 0.07 0.07 0 0 0] (for first 

looping, it is derived from direct measurement 

calculation), the P1 can be calculated as follows 

P1 = P0 P 

P1 = [0.07 0.13 0.53 0.13 0.07 0.07 0 0 0] P 

P1 = [0.11 0.24 0.16 0.14 0.03 0.22 0.03 0.05 0.02] 

According to P1, the highest probability is 

0.24 (XTS2). Referred to Table 2, it means that 

Kint_t+1 is 0.00017. Assumed the latest measured 

delay is 34 ms (Kint_t is 0.0002), the Kint is 

calculated as follows: 

Kint = Kint_t + Kint_t+1 

= 0.0002 + 0.00017 = 0.00037 

According to the verification experiment, this 

calculation rule results in non-optimal response 

parameters (mainly for % overshoot). Therefore, 

it is needed to be enhanced by adding a weighting 

factor as equation (7). Table 6 shows the effect of 

the weighting factor on transient responses. 

Considering the optimal transient response, the 

weighting factors are 0.5 and 0.5 for a and b, 

respectively.  

The response of the chosen weighting is 

depicted in Figure 7. If compared to the fixed Kint, 

the proposed method can enhance %OS (from 

17.06 % to 2.45%) and settling time (from 457.6 s 

to 254 s) but slower in rise time (from 167.44 s to 

259.25 s). 

As shown in Table 6, the ability of adaptive 

Kint, as obtained from equation (7), is able to find 

appropriate Kint corresponding to the last delay 

measurement and the delay prediction (detail 

shown in Table 2), thus it can enhance transient 

responses (%OS, Tr, Ts, ess). 

 

 

Table 6. Weighting tuning. 

weighted Transient response 

a b % OS Tr (s) Ts (s) ess 

1 1 16.1 116.86 345.21 0 

0.5 0.5 2.45 259.25 254.06 0 

0.6 0.4 2.55 287.86 282.1 0 

0.85 0.15 2.26 341.33 334.5 0 

0.95 0.05 2.18 354.09 347 0 

0.3 0.7 16.09 122.21 357.21 0 

0.1 0.9 15.83 112.24 328.47 0 

Kint = 0.004 17.06 167.44 457.6 0 

 

 
Figure 7. Step response with gain 0.5 for both a and b. 
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4. CONCLUSION 

This study uses a stochastic Linear Quadratic 

Integral (LQI) with Markov chain to overcome 

random delay in the Networked Control System 

(NCS). In this research each the loop control 

sampling time, also stated as delay time, consists 

of time in MTU, sending, receiving, and RTU, is 

measured directly. According to measurement 

experiment, it showed that there is delay time 

variation due to communication networks (varied 

from 31 to 39 ms), which affect the control 

response. 

In this research, for certain range of delay, 

the integral gain (Kint) is tuned to get proper 

response qualities (%OS, Tr, Ts, ess) so there will 

be a pairing between range delay and Kint. For 

each Kint value of the current measured delay 

(Kint_t) and Kint of the predicted delay (Kint_t+1), it 

can be combined by giving weights a and b so that 

the total Kint for each calculation cycle is Kint = a* 

Kint_t + b* Kint_t+1. According to trial-error of a-b 

value, compared to static Kint, it is found 0.5 for 

both a-b giving the optimum transient response by 

decreasing 14.61% of overshoot and 203.54 second 

faster of settling time. 

This study has still several limitations (but 

open broader research opportunity) such as a 

single node plant, using UDP for communication 

protocol, and applied to stable plant model (DC 

motor). Other future research opportunities are 

comparing LQI to other methods such as MPC, 

MRAC, and MIMO based control system. 
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