ANALISIS PERBANDINGAN MATERIAL AGREGAT TERHADAP KARAKTERISTIK CAMPURAN ASPHALT CONCRETE WEARING COURSE (AC-WC)

(Analysis of Aggregate Materials Comparison to Mixture Characteristic of Asphalt Concrete Wearing Course (AC-WC))

Naela Aesara¹, Imam Hagni Puspito¹, Nuryani Tinumbia¹

¹Program Studi Teknik Sipil Universitas Pancasila E-mail: naelaesara12@gmail.com

ABSTRAK

Setiap agregat memiliki karakteristik yang berbeda-beda dari satu wilayah dengan wilayah yang lain, bahkan dari satu lokasi dengan lokasi yang lain dalam wilayah yang sama. Kebanyakan konstruksi jalan di Wilayah Jabodetabek menggunakan material agregat yang bersumber dari tiga *guarry* di Jawa Barat yaitu Gunung Bitung, Gunung Rumpin, dan Gunung Sudamanik. Penelitian ini bertujuan untuk menganalisis perbandingan karakteristik campuran aspal material agregat dari tiga *quarry* tersebut melalui nilai karakteristik Marshall pada campuran beton aspal dengan menggunakan Spesifikasi Bina Marga Revisi III (2010). Metode eksperimental digunakan untuk mengetahui material agregat mana yang baik untuk konstruksi beton aspal dengan proporsi campuran agregat yaitu Agregat kasar 38%, Agregat Sedang 17% dan Agregat Halus 45% terhadap total campuran aspal yang telah ditentukan oleh Bina Marga (2010). Pengujian pada campuran aspal dengan material dari tiga quarry tersebut didapat kadar aspal optimum (KAO) masing-masing 6,65%, 5,85%, dan 6,65%. Hasil pengujian Marshall didapat nilai parameter karakteristik campuran untuk campuran aspal dengan material dari Gunung Bitung berupa VIM (4,40%), VMA (17,30%), VFB (74,30%), Stabilitas (1180 Kg), Flow (3,63 mm), MQ (218 kg/mm), untuk campuran aspal dengan material dari Gunung Rumpin berupa VIM (4,14%), VMA (16,53%), VFB (74,80%), Stabilitas (1120 Kg), Flow (3,62 mm), MQ (318 kg/mm) dan untuk campuran aspal dengan material dari Gunung Sudamanik berupa VIM (3,84%), VMA (17,23%), VFB (77,20%), Stabilitas (1253 Kg), Flow (3,22 mm), MQ (389 kg/mm). Hasil karakteristik Marshall pada KAO untuk campuran aspal dengan material dari Gunung Bitung, Gunung Rumpin, dan Gunung Sudamanik telah memenuhi spesifikasi, namun material dari quarry Gunung Sudamanik memiliki karakteristik paling baik diantara ketiganya.

Kata Kunci: Perbandingan Material Agregat, Karakteristik Marshall, KAO, Campuran Aspal Beton, Karakteristik Campuran Aspal

ABSTRACT

Every material has different characteristics from one region to another, even from one location to another in the same area. The road constructions in Jabodetabek area use aggregate material sourced from three quarries in West Java, namely Gunung Bitung, Gunung Rumpin, and Gunung Sudamanik. This study aims to analyze the characteristic comparison of asphalt aggregate mixtures from the three quarries through Marshall characteristic values on asphalt concrete mixtures using the Bina Marga Specification III Revision (2010). The experimental method is used to determine which aggregate material is good for asphalt concrete construction with aggregate mixture proportions of coarse aggregate 38%, medium aggregate 17% and fine aggregate 45% of the total asphalt mixture determined by Bina Marga (2010). Based on testing, the Optimum Asphalt Content (OAC) obtained were 6.65%, 5.85%, and 6.65%. Marshall test results obtained VIM (4.40%), VMA (17.30%), VFB (74.30%), Stability (1180 Kg), Flow (3.63 mm), MQ (218 kg / mm) for asphalt mixture with Gunung Bitung materials; VIM (4.14%), VMA (16.53%), VFB (74.80%), Stability (1120 Kg), Flow (3.62 mm), MQ (318 kg / mm) for asphalt mixture with Gunung Rumpin materials; and VIM (3.84%), VMA (17.23%), VFB (77.20%), Stability (1253 Kg), Flow (3.22 mm), MQ (389 kg / mm) for asphalt mixture Gunung Sudamanik materials. The results of Marshall characteristics on KAO for asphalt mixtures with each materials have met the specifications, but the Gunung Sudamanik materials has the best characteristics among the three.

Keywords: Comparison of Aggregate Materials, Marshall Characteristics, Optimum Asphalt Content, Concrete Asphalt Mixture, Characteristic of Asphalt Mix

PENDAHULUAN

Pertumbuhan volume lalu lintas semakin meningkat dengan pesat akibat pertumbuhan dan perkembangan kota serta laju pertumbuhan penduduk yang mempengaruhi mobilisasi penumpang maupun barang sehingga memicu kerusakan pada ialah dimana beban lebih besar daripada kemampuan jalan untuk memikul Kondisi tersebut harus didukung oleh konstruksi jalan yang berkualitas untuk memberikan kenyamanan dalam berkendara. Kerusakan jalan telah menjadi permasalahan yang sering dihadapi. Hal tersebut menyebabkan umur ialan lebih pendek dari lentur perencanaan. Perkerasan merupakan perkerasan yang umum digunakan pada struktur perkerasan jalan. Perkerasan ini umumnya ekonomis, mempunyai sifat yang lentur dan permukaan yang lebih rata sehingga perkerasan lentur ini mempunya tingkat kenyamanan yang lebih tinggi dari perkerasan jenis lainnya.

Untuk penggunaan agregat dari alam sudah banyak quarry yang beroperasi di daerah-daerah Indonesia terlebih khusus di daerah Jawa Barat. Setiap agregat memiliki karakteristik yang berbeda-beda dari satu wilayah dengan wilayah yang lain, bahkan dari satu lokasi dengan lokasi yang lain dalam wilayah yang sama. Oleh karena itu penelitian ini akan meninjau material yang ada di beberapa sumber di wilayah Jawa yang digunakan untuk pembangunan infrastruktur di Indonesia khususnya di Jabodetabek. Pada saat ini pembangunan infrastruktur di Indonesia semakin meningkat, maka dari itu diperlukan materialmaterial yang berkualitas tinggi untuk mencapai mutu yang diinginkan. Daerah Jawa Barat terdapat banyak quarry yang menghasilkan material yang berkualitas. maka dari itu material agregat yang digunakan dalam penelitian ini yaitu material agregat dari quarry Gunung Bitung, Gunung Rumpin, dan Gunung Sudamanik dibandingkan sebagai acuan pembanding yang sudah dikenal memiliki karakteristik yang baik.

Maksud dari penelitian ini adalah untuk mengetahui perbandingan material agregat kasar, agregat sedang, dan agregat halus dengan melakukan analisis campuran AC-WC sehingga dapat diketahui material lokl yang lebih unggul khususnya di Wilayah Jawa Barat.

Tujuan dilakukannya penelitian yaitu mengetahui material yang memiliki kinerja paling baik dibandingkan dengan sumber material lainnya...

Penggunaan Laston AC-WC (Asphalt Concrete Wearing Course) yaitu untuk lapis permukaan paling atas dalam perkerasan dan mempunyai tekstur yang paling halus dibandingkan dengan jenis laston lainnya. Pada campuran laston yang bergradasi menerus tersebut mempunyai sedikit rongga dalam struktur dibandingkan agregatnya dengan campuran bergradasi senjang. Hal tersebut menyebabkan campuran AC-WC lebih peka terhadap variasi dalam proporsi campuran. Berikut merupakan persyaratan

laston dalam lapis perkerasan yang dapat dilihat pada Tabel 1. yang dikeluarkan oleh Kementrian Pekerjaan Umum Direktorat Jenderal Bina Marga tahun 2010 revisi III.

Tabel 1. Ketentuan Sifat-Sifat Campuran Laston (AC)

		Laston			
Sifat-sifat Campur	an	Lapis Aus	Lapis Antara	Pondasi	
Jumlah Tubukan per bidang			75	112	
Rasio Partikel Iolos	Min.		1,0		
ayakan 0,075 mm dengan kadar aspal efektif	Maks.		1,4		
Rongga Dalam	Min.		3,0		
Campuran (%)	Maks.		5,0		
Rongga Dalam Agregat (VMA) (%)	Min	15	14	13	
Rongga Terisi Aspal (%)	Min.	65	65	65	
Stabilitas Marshall	Min.	8	300	1800	
Pelelehan (mm)	Min.		2	3	
releienan (mm)	Maks.		4	6	
Stabilitas <i>Marshall</i> sisa (%) setelah perendaman selama 24 jam, 60° C	Min.		90		
Rongga dalam campuran (%) pada kepadatan membal (refusal)	Min.		2		

(Sumber: Spesifikasi Umum Bina Marga, 2010)

Karakteristik Campuran Aspal

Dalam merencanakan campuran aspal yang akan digunakan untuk perkerasan jalan karakteristik yang harus dimiliki oleh campuran aspal tersebut. Berikut ini adalah karakteristik campuran aspal yang harus dimiliki, menurut Sukirman (2003) :

Stabilitas

Stabilitas adalah kemampuan lapisan perkerasan menerima beban lalu lintas tanpa terjadi perubahan bentuk tetap seperti gelombang, alur dan bleeding. Kebutuhan akan stabilitas setingkat dengan jumlah lalu lintas dan beban kendaraan yang akan memakai jalan tersebut. Jalan dengan volume lalu lintas tingg dan sebagian besar merupakan kendaraa berat menuntut stabilitas yang lebih besar dibandingkan dengan jalan dengan volume lalu lintas yang hanya terdiri dari kendaraan penumpang saja. Kestabilan yang terlalu tinggi menyebabkan lapisan itu menjadi kaku dan cepat mengalami retak, disamping itu karena volume antar agregat kurang, hal ini menghasilkan film aspal tipis dan mengakibatkan ikatan aspal mudah lepas sehingga durabilitasnya rendah.

Durabilitas

Durabilitas diperlukan pada lapisan permukaan sehingga lapisan dapat mampu menahan keausan akibat pengaruh cuaca, air dan perubahan suhu ataupun keausan akibat gesekan kendaraan. Faktor vand mempengaruhi durabilitas adalah sebagai berikut :

- a. Film aspal atau selimut aspal, film aspal yang tebal dapat menghasilkan lapis aspal beton yang berdurabilitas tinggi, tetapi kemungkinan terjadinya bleeding menjadi tinggi.
- b. VIM kecil sehingga lapis kedap air dan udara tidak masuk kedalam campuran yang menyebabkan terjadinya oksidasi dan aspal menjadi rapuh/getas.
- c. VMA besar, sehingga film aspal dapat dibuat tebal. Jika VMA dan VIM kecil serta kadar aspal tinggi kemungkinan terjadinya bleeding besar. Untuk mencapai VMA yang besar dipergunakan agregat bergradasi senjang.

Fleksibilitas (Kelenturan)

Fleksibilitas pada lapisan perkerasan adalah kemampuan lapisan untuk dapat mengikuti deformasi yang terjadi akibat beban lalu lintas berulang tanpa timbulnya retak dan perubahan volume. Fleksibilitas dapat diperoleh dengan:

- a. Penggunaan agregat bergradasi senjang sehingga diperoleh VMA yang besar.
- b. Penggunaan aspal lunak (aspal dengan penetrasi yang tinggi).
- c. Penggunaan aspal yang cukup banyak sehingga diperoleh VIM yang kecil.

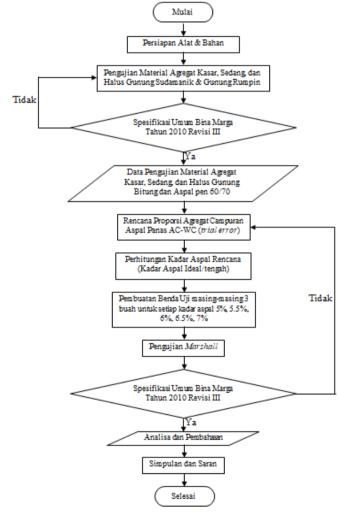
Tahanan Geser (Skid Resistance)

Tahanan geser adalah kekesatan yang diberikan oleh perkerasan sehingga kendaraan tidak mengalami slip baik di waktu hujan atau basah maupun di waktu kering. Kekesatan dinyatakan dengan koefisien gesek antar permukaan jalan dan ban kendaraan. Tahanan geser tinggi jika:

- a. Penggunaan kadar aspal yang tepat sehingga tak terjadi bleeding.
- b. Penggunaan agregat dengan kasar.
- c. Penggunaan agregat berbentuk kubus.
- d. Penggunaan agregat kasar yang cukup.

Kemudahan Pekerjaan (Workability)

Kemudahan pekejaan adalah mudahnya suatu campuran untuk dihampar dan dipadatkan sehingga diperoleh hasil yang memenuhi kepadatan yang diharapkan. Faktor mempengaruhi kemudahan dalam pelaksanaan adalah:


- a. Gradasi agregat, agregat bergradasi baik lebih mudah dilaksanakan dari pada agregat bergradasi lain.
- b. Temperatur campuran, ikut ynag mempengaruhi kekerasan bahan pengikat yang bersifat termoplastis.
- c. Kandungan bahan pengisi (filler) yang tinggi menyebabkan pelaksanaan lebih sukar.
- Ketahanan Kelelahan (Fatique Resistance) Ketahanan adalah kelelahan ketahanan dari lapis aspal beton dalam menerima beban berulang tanpa terjadinya kelelahan yang

berupa alur (rutting) dan retak. Faktor yang mempengaruhi ketahanan terhadap kelelahan adalah:

- VIM yang tinggi dan kadar aspal yang rendah akan mengakibatkan kelelahan lebih cepat.
- VMA yang tinggi dan kadar aspal yang tinggi dapat mengakibatkan lapis perkerasan menjadi fleksibel.

METODE

Metode penelitian yang digunakan dalam penelitian ini adalah metode eksperimental dengan melakukan seluruh kegiatan percobaan dilakukan di dalam Laboratorium AMP. PT. Prayoga Pertambangan dan Energi yang bertempat di Desa Babakan Madang, Sentul-Bogor Jawa Barat, untuk lebih lanjut mengenai langkah-langkah pengujian dalam melakukan penelitian ini dapat dilihat pada Gambar 1. Flow Chart Penelitian:

Gambar 1. Flow Chart Penelitian

Peralatan yang digunakan:

Peralatan yang digunakan dalam penelitian ini adalah sebagai berikut:

Pertambangan

dan

Energi.

1. Satu Set Saringan (Sieve)

Penggunaan alat saringan digunakan untuk memisahkan agregat berdasarkan gradasi/ukuran

Alat Uii Pemeriksaan Agregat

Dalam penelitian ini dilakukan pemeriksaan agregat peralatan yang digunakan untuk pengujian agregat antara lain alat pengering yaitu oven, timbangan berat, alat uji berat jenis (piknometer, timbangan dan pemanas).

Alat Uji Karakteristik Campuran Agregat Dan

Alat uji yang digunakan adalah seperangkat alat untuk metode marshall, meliputi:

- a. Alat tekan marshall yang terdiri dari kepala penekan berbentuk lengkung, cincin penguji berkapasitas 22,2 KN (5000 lbs) yang dilengkapi dengan arloji pengukur flowmeter.
- b. Alat cetak benda uji berbentuk silinder diameter 4 inchi (10,16 cm) dan tinggi 3 inchi (7.5 cm).
- c. Alat tumbuk yang digunakan untuk pemadatan campuran sebanyak 75 kali tumbukan tiap sisi (atas dan bawah).
- d. Ejektor untuk mengeluarkan benda uji setelah proses pemadatan.
- e. Bak perendam (water bath) yang dilengkapi pengatur suhu.
- f. Alat-alat penunjang yang meliputi penggorengan pencampur, kompor pemanas, termometer, sendok pengaduk, sarung tangan anti panas, kain lap, timbangan, ember untuk merendam benda uji, jangka sorong, pan, dan tipe-x yang digunakan untuk menandai benda uji.

Bahan-bahan yang digunakan:

Bahan-bahan yang digunakan dalam penelitian ini adalah:

1. **Aspal**

Aspal yang digunakan dalam penelitian ini adalah aspal Pertamina dengan nilai penetrasi 60/70 yang telah disediakan oleh PT. Prayoga pertambangan dan energi.

Agregat Kasar

Agregat kasar yang digunakan dalam penelitian ini adalah agregat yang berasal dari quarry Gunung Bitung, Bogor, Jawa Barat. Agregat kasar ini sudah disediakan oleh PT. Prayoga Pertambangan dan Energi.

Agregat Sedang

Agregat sedang yang digunakan dalam penelitian ini adalah agregat yang berasal dari quarry Gunung Bitung, Bogor, Jawa Barat. Agregat kasar ini sudah disediakan oleh PT. Prayoga Pertambangan dan Energi.

Agregat Halus

Agregat halus yang digunakan dalam penelitian ini adalah agregat yang berasal dari quarry Gunung Bitung, Bogor, Jawa Barat. Agregat halus sudah disediakan oleh PT. Prayoga

Parameter dan Formula Perhitungan

Parameter dan formula untuk menganalisa campuran aspal panas adalah sebagai berikut:

Kadar Aspal Rencana

Perkiraan kadar aspal optimum dapat direncanakan setelah dilakukan pemilihan dan penggabungan pada tiga fraksi agregat. Sedangkan perhitungannya adalah sebagai berikut:

$$P_b = 0.035(\% CA) + 0.045(\% FA) + 0.18(\% FF) + K$$
(1)

Keterangan:

 P_b = Perkiraan kadar aspal optimum

CA = Nilai prosentase agregat kasar tertahan saringan No.8

FΑ = Nilai prosentase agregat halus lolos saringan

No.8 tertahan No.200

= Nilai prosentase filler (tertahan saringan FF No.200)

Κ = Konstanta (kira-kira 0,5 - 1,0)

Persamaan diatas diperoleh dari Pd-T-04-2005-B (Badan Litbang Departemen Pekerjaan Umum, 2005) yang digunakan untuk mencari kadar aspal tengah atau ideal.

Berat Jenis Bulk dari Agregat Campuran

Agregat yang digunakan untuk membentuk beton aspal padat, memiliki gradasi tertentu yang biasanya diperoleh dari pencampuran beberapa agregat total yang terdiri dari atas fraksi-fraksi agregat kasar, agregat halus dan bahan pengisi yang masing-masing mempunyai berat jenis yang berbeda, maka berat jenis bulk (Gab) agregat total dapat dihitung sebagai berikut:

$$G_{sb} = \frac{P_1 + P_2 + \dots + P_n}{\frac{P_1}{G_1} + \frac{P_2}{G_2} + \dots + \frac{P_n}{G_n}}$$
 (2)

Keterangan:

= Berat jenis bulk total agregat Gsb

P1 + P2 + ... + Pn = Persentase masing-masing fraksi

agregat

G1 + G2 + ... +Gn = Berat jenis bulk masing-masing fraksi agregat

Berat Jenis Efektif Agregat Campuran

Berat jenis maksimum dari beton aspal yang belum dipadatkan (Gmm), dapat ditentukan di Laboratorium sesuai AASHTO T 209-90.

$$G_{se} = \frac{P_1 + P_2 + \dots + P_n}{\frac{P_1}{G_1} + \frac{P_2}{G_2} + \dots + \frac{P_n}{G_n}}$$
 (3)

Keterangan:

= Berat jenis bulk total agregat Gse

= Persentase masing-masing fraksi

P1 + P2 + ... + Pn agregat

= Berat jenis bulk masing-masing

G1 + G2 + ... +Gn fraksi agregat

Berat Jenis Maksimum Campuran

Berat jenis maksimum campuran (Gmm) pada masingmasing kadar aspal diperlukan untuk menghitung kadar rongga masing-masing kadar aspal. Ketelitian hasil uji terbaik adalah bila kadar aspal campuran mendekati kadar aspal optimum. Sebaliknya pengujian berat jenis maksimum dilakukan dengan benda uji sebanyak minimum dua buah (duplikat) atau tiga buah (triplikat).

Selanjutnya Berat Jenis Maksimum (Gmm) campuran untuk masing-masing kadar aspal dapt dihitung menggunakan berat jenis efektif (Gse) rata-rata sebagai berikut:

$$G_{mm} = \frac{P_{mm}}{\frac{P_s}{G_{se}} + \frac{P_b}{G_b}}$$
 (4)

Keterangan:

Gmm Berat jenis maksimum campuran, rongga

= udara nol

Pmm = Persen berat total campuran =100

Kadar agregat persen terhadap VMA berat

Ps = total campuran VFB

Kadar aspal, persen terhadap berat total

Pb = campuran

Gse = Berat jenis efektif agregat

Gb = Berat jenis aspal

Penyerapan Aspal

Penyerapan aspal dinyatakan dalam persen terhadap berat agregat total, tidak terhadap berat campuran. Perhitungan penyerapan aspal (Pba) adalah sebagai

$$P_{ab} = 100 \frac{G_{se} + G_{ab}}{G_{se} + G_{se}} G_b$$
 (5)

Keterangan:

=Penyerapan aspal, persen total agregat Pab

Gab =Berat ienis bulk agregat =Berat jenis efektif Gse =Berat jenis aspal Gb

5. Kadar Aspal Efektif

Kadar aspal efektif (Pbe) campuran beraspal adalah kadar aspal total dikurangi jumlah aspal yang terserap oleh partikel agregat. Kadar aspal efektif ini akan menyelimuti permukaan agregat bagian luar yang pada akhirnya akan menentukan kinerja perkerasaan beraspal. Rumus kadar aspal efektif adalah:

$$P_{be} = P_b \frac{P_{ab}}{100} P_s$$
 (6)

Keterangan:

 P_{be} = Kadar aspal efektif, persen total campuran

= Kadar aspal, persen total campuran

 P_{ab} = Penyerapan aspal, persen total campuran = Kadar agregat, persen total campuran

6. Rongga di Antara Mineral Agregat (VMA)

Rongga antar mineral agregat (VMA) adalah ruang diantara partikel agregat pada suatu perkerasan, termasuk rongga udara dan volume aspal efektif (tidak termasuk volume aspal yang diserap agregat). VMA dihitung berdasarkan berat jenis bulk (Gsb) agregat dan dinyatakan sebagai persen volume bulk campuran yang dipadatkan. VMA dapat dihitung pula terhadap berat campuran total atau terhadap berat agregat total. Perhitungan VMA terhadap campuran adalah dengan rumus berikut :

Terhadap berat campuran total

$$VMA = 100 \frac{P_{sb} \times P_s}{G_{sb}} \qquad(7)$$

Keterangan:

VMA = Rongga udara pada mineral agregat, prosentase dari volume total.(%)

Gmb = Berat jenis campuran setelah pemadatan (gr/cc)

Gsb = Berat jenis bulk agregat, (gr/cc)

=Kadar agregat, persen terhadap berat total campuran, (%)

Terhadap berat agregat total

$$VMA = 100 - \frac{G_{mb}}{G_{sb}} \times \frac{100}{(100 + P_b)}$$
(8)

Keterangan:

VMA Rongga udara pada mineral agregat,

prosentase dari volume total,(%)

Berat jenis campuran setelah Gmb

pemadatan (gr/cc)

Gsb Berat jenis bulk agregat, (gr/cc)

 P_{b} Kadar aspal, persen total campuran,

Rongga di Dalam Campuran (VIM)

Rongga udara dalam campuran VIM dalam campuran perkerasan beraspal terdiri atas ruang udara diantara partikel agregat yang terselimuti aspal. Volume rongga udara dalam campuran dapat ditentukan dengan rumus berikut:

$$VIM = 100 \frac{G_{mn} - P_{mb}}{G_{mm}}$$
 (9)

Keterangan:

= Rongga udara pada campuran setelah VIM pemadatan, prosentase dari volume total,

Gmb = Berat jenis campuran setelah pemadatan (gr/cc)

= Berat jenis campuran maksimum teoritis Gmm setelah pemadatan (gr/cc)

Stabilitas

Nilai stabilitas diperoleh berdasarkan nilai masingmasing yang ditunjukkan oleh jarum dial. Untuk nilai stabilitas, nilai yang ditunjukkan pada jarum dial perlu dikonversikan terhadap alat Marshall. Selain itu pada umumnya alat Marshall yang digunakan bersatuan Lbf (pound force), sehingga harus disesuaikan satuannya terhadap satuan kilogram. Selanjutnya nilai tersebut juga harus disesuaikan dengan angka koreksi

terhadap ketebalan atau volume benda uji.

Rongga Udara vang Terisi Aspal (VFB)

Rongga terisi aspal (VFB) adalah persen rongga yang terdapat diantara partikel agregat (VMB) yang terisi oleh aspal, tidak termasuk aspal yang diserap oleh agregat. Rumus adalah sebagai berikut:

$$VFB = \frac{100(VMA - V_a)}{VMA} \qquad \dots (10)$$

Keterangan:

= Rongga udara yang terisi aspal, prosentase **VFB** dari VMA. (%)

VMA = Rongga udara pada mineral agregat. prosentase dari volume total. (%)

 V_a = Rongga udara pada campuran setelah pemadatan, prosentase dari volume total, (%)

10. Flow

Nilai flow berdasarkan nilai masing-masing yang ditunjukkan oleh jarum dial. Hanya saja untuk alat uji jarum dial flow biasanya sudah dalam satuan mm (milimeter), sehingga tidak perlu dikonversikan lebih lanjut.

11. Marshall

Hasil bagi Marshall/Marshall Quotient (MQ) merupakan hasil pembagian dari stabilitas dengan kelelehan. Sifat Marshall tersebut dapat dihitung dengan menggunakan rumus berikut:

$$MQ = \frac{MS}{MF}$$
 (11)

Keterangan:

MQ = Marshall Quotient, (kg/mm) = Marshall Stability, (kg) MS = Flow Marshall, (mm) MF

HASIL DAN PEMBAHASAN

Setelah dilakukan beberapa pengujian mulai dari pengujian aspal dan material agregat (agregat kasar, sedang, dan halus) dan juga setelah dibuat benda uji (briket) sebanyak ±45 benda uji (15 benda uji dengan material Gunung Bitung, 15 benda uji dengan material Gunung rumpin, dan 15 benda uji dengan material Gunung Sudamanik) barulah dilakukan analisis dan pembahasan terhadap hasil yang telah didapatkan. Berikut ini merupakan analisis hasil dari pengujian material yang akan digunakan dalam pembuatan campuran aspal berdasarkan spesifikasi Kementrian Pekerjaan Umum Direktorat Jenderal Bina Marga, Revisi III, 2010.

Harris Daniero "and Maderical

	Hasil Pengujian Material								
Tabel 2.	Tabel 2. Hasil Pengujian Analisa Saring Agregat								
		Material Gur	nung Bitung						
Uku Sarin			Rata-rata Lolos ((%)					
Inch	mm	Agregat Kasar	Agregat Sedang	Agregat Halus					
1 ½	37,9	=	-	-					
1	25,4	-	-	-					
3/4	19,1	100	-	-					
1/2	12,7	99,80	-	-					
3/8	9,52	67,84	100,00	100,00					
No. 4	4,75	3,40	77,48	99,94					
No. 8	2,38	2,18	17,13	88,40					
No. 16	1,17	1,74	6,36	62,43					
No. 30	0,59	1,69	5,43	44,57					
No. 50	0,29	1,54	3,68	30,34					
No. 100	0,14	1,25	2,52	18,75					
No. 200	0,075	0,83	1,04	12,14					
		Material Gun	ung Rumpin						
Uku Sarin			Rata-rata Lolos ((%)					
Inch	mm	Agregat Kasar	Agregat Sedang	Agregat Halus					
1 ½	37,9	-	-	-					
1	25,4	-	-	-					
3/4	19,1	100	-	-					
1/2	12,7	100	-	-					
3/8	9,52	68,55	100,00	100,00					
No. 4	4,75	11,87	73,13	99,95					
No. 8	2,38	2,53	15,91	92,33					
No. 16	1,17	1,46	4,01	64,28					
No. 30	0,59	1,36	1,91	46,70					
NI- 50		4 0 4	4 00						

0,075 Material Gunung Sudamanik

1,92

1,75

31,90

18,78

12,56

1,21

1,16

No. 50

No. 100

No. 200

0,29

0,14

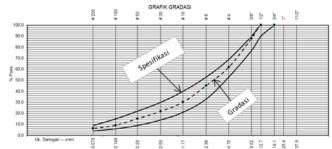
Ukur Sarin		Rata-rata Lolos (%)				
Inch	mm	Agregat Kasar	Agregat Sedang	Agregat Halus		
1 ½	37,9		-	-		
1	25,4	ı	-	=		
3/4	19,1	100	-	-		
1/2	12,7	100	-	-		
3/8	9,52	68,36	100,00	100,00		
No. 4	4,75	11,36	72,90	99,95		
No. 8	2,38	1,90	15,44	92,35		
No. 16	1,17	0,90	3,22	64,33		
No. 30	0,59	0,86	1,45	46,72		
No. 50	0,29	0,81	1,31	31,89		
No. 100	0,14	0,75	1,21	18,91		
No. 200	0.075	0.60	0.98	12.48		

Tabel 3. Proporsi Campuran Agregat

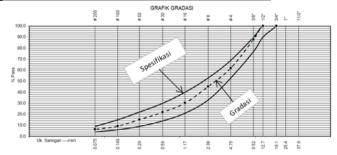
	Material C	Sunung Bitung	
Proporsi Agregat	Agregat Agregat Kasar Sedang		Agregat Halus
Agregat	38%	17%	45%
Total		100%	
	Material G	unung Rumpin	
Proporsi	Agregat Kasar	Agregat Sedang	Agregat Halus
Agregat	38%	17%	45%
Total		100%	
	Material Gui	nung Sudamanik	
Proporsi Agregat	Agregat Kasar	Agregat Sedang	Agregat Halus
Agregat	38%	17%	45%
Total		100%	

Tabel 4. Gradasi Agregat Gabungan (Gunung Bitung)

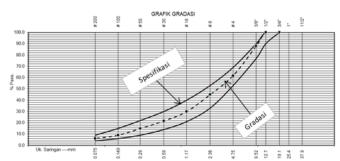
Ukuran Sa	aringan	F	Persentase Agregat (%	6)	Agregat Gabungan	Spesifikasi	Status
Inch	mm	Agregat Kasar	Agregat Sedang	Agregat Halus	Agregat Gabungan	Spesilikasi	Status
1 ½	37,9	-	•	=	-	•	-
1	25,4	-	•	-	-	ī	-
3/4	19,1	38	17	45	100	100	Memenuhi
1/2	12,7	37,92	17	45	99,92	90-100	Memenuhi
3/8	9,52	25,78	17	45	87,78	77-90	Memenuhi
No. 4	4,75	1,29	13,17	44,98	59,44	53-69	Memenuhi
No. 8	2,38	0,83	2,91	39,78	43,52	33-53	Memenuhi
No. 16	1,17	0,66	1,08	28,09	29,84	21-40	Memenuhi
No. 30	0,59	0,64	0,92	20,06	21,62	14-30	Memenuhi
No. 50	0,29	0,59	0,63	13,65	14,87	9-22	Memenuhi
No. 100	0,14	0,48	0,43	8,44	9.34	6-15	Memenuhi
No. 200	0,075	0,31	0,18	5,46	5,95	4-9	Memenuhi


Tabel 5. Gradasi Agregat Gabungan (Gunung Rumpin)

Ukuran Sa	ringan		sentase Agregat		A =====4		
Inch	mm	Agregat Kasar	Agregat Sedang	Agregat Halus	Agregat Gabungan	Spesifikasi	Status
1 ½	37,9	-	-	-	-	=	-
1	25,4	-	-	-	-	=	-
3/4	19,1	38	17	45	100	100	Memenuhi
1/2	12,7	38	17	45	100	90-100	Memenuhi
3/8	9,52	26,05	17	45	88,05	77-90	Memenuhi
No. 4	4,75	4,51	12,43	44,98	61,92	53-69	Memenuhi
No. 8	2,38	0,96	2,70	41,55	45,22	33-53	Memenuhi
No. 16	1,17	0,56	0,68	28,93	30,17	21-40	Memenuhi
No. 30	0,59	0,52	0,33	21,02	21,86	14-30	Memenuhi
No. 50	0,29	0,46	0,33	14,36	15,14	9-22	Memenuhi
No. 100	0,14	0,44	0,30	8,45	9,19	6-15	Memenuhi
No. 200	0,075	0,41	0,24	5,65	6,30	4-9	Memenuhi


Tabel 6. Gradasi Agregat Gabungan (Gunung Sudamanik)

Ukuran Sa	ringan	Persentase Agregat (%)			Agragat		egat (%)	
Inch	mm	Agregat Kasar	Agregat Sedang	Agregat Halus	Agregat Gabungan	Spesifikasi	Status	
1 ½	37,9	-	-	-	-	-	-	
1	25,4	-	-	-	-	-	-	
3/4	19,1	38	17	45	100	100	Memenuhi	
1/2	12,7	38	17	45	100	90-100	Memenuhi	
3/8	9,52	25,98	17	45	87,98	77-90	Memenuhi	
No. 4	4,75	4,32	12,39	44,98	61,69	53-69	Memenuhi	
No. 8	2,38	0,72	2,63	41,56	44,90	33-53	Memenuhi	
No. 16	1,17	0,34	0,55	28,95	29,84	21-40	Memenuhi	
No. 30	0,59	0,33	0,25	21,02	21,60	14-30	Memenuhi	
No. 50	0,29	0,31	0,22	14,35	14,88	9-22	Memenuhi	
No. 100	0,14	0,29	0,21	8,51	9,00	6-15	Memenuhi	
No. 200	0,075	0,23	0,17	5,61	6,01	4-9	Memenuhi	


Hasil dari pengujian gradasi agregat dari Gunung Bitung, Gunung Rumpin, dan Gunung Sudamanik setelah disajikan dalam bentuk tabel, maka disajikan dalam bentuk grafik, dalam bentuk grafik inilah dapat diketahui gradasi tersebut memenuhi spesifikasi atau tidak. Dapat dilihat pada Gambar 2, 3, dan 4, dimana pada grafik tersebut didapatkan bahwa gradasi agregat gabungan (gradasi menerus/well graded) mulai dari agregat dari Gunung Bitung sampai dengan agregat dari Gunung Sudamanik memenuhi spesifikasi yang telah ditetapkan oleh Bina Marga.

Gambar 2. Grafik Spesifikasi Agregat (Gunung Bitung)

Gambar 3. Grafik Spesifikasi Agregat (Gunung Rumpin)

Gambar 4. Grafik Spesifikasi Agregat (Gunung Sudamanik)

Setelah didapatkan gradasi agregat untuk campuran aspal dengan material dari Gunung Bitung, Gunung Rumpin, dan Gunung Sudamanik barulah dapat dilakukan penentuan kadar aspal yang akan digunakan. Penentuan kadar aspal ini menggunakan persamaan (1) dimana dalam formula untuk mencari kadar aspal rencana tersebut diperlukan data dari analisa saringan. Kadar aspal rencana untuk campuran aspal dengan material dari Gunung Bitung, Gunung Rumpin, dan Gunung Sudamanik dapat dilihat pada Tabel 9 berikut:

Tabel 7. Kadar Aspal Rencana

No.	Kadar Aspal (%)	Material Gunung Bitung	Material Gunung Bitung	Material Gunung Bitung
1.	Pb – 1%	5	5	5
2.	Pb - 0,5%	5,5	5,5	5,5
3.	Pb	6	6	6
4.	Pb + 0,5%	6,5	6,5	6,5
5.	Pb + 1%	7	7	7

Setelah kadar aspal rencana didapatkan (Tabel 9) maka dapat langsung dibuat benda uji. Di bawah ini merupakan nilai dari karakteristik marshall hasil pengujian benda uji (briket):

Tabel 8. Hasil Pengujian Marshall Campuran Aspal

(Gununa Bituna)

· `	rakteristik		Ka	adar Aspal (%	6)			
Mar	rshall	5,0	5,5	6,0	6,5	7,0		
	Hasil	7,55	6,71	5,53	5,37	4,75		
VIM	Syarat		3 – 5					
(%)	Status	TIDAK OK	TIDAK OK	TIDAK OK	TIDAK OK	OK		
	Hasil	15,41	15,69	15,67	15,43	17,08		
VMA	Syarat			Min 15				
(%)	Status	ОК	ОК	ок	OK	ОК		
	Hasil	55,59	61,26	67,71	73,20	77,07		
VFB	Syarat	Min 65						
(%)	Status	TIDAK OK	TIDAK OK	ОК	ОК	ОК		
	Hasil	996	1046	976	1031	1021		
Stabilitas	Syarat			Min 800				
(kg)	Status	ОК	OK	ОК	ОК	OK		
Flow	Hasil	2,53	2,76	2,84	3,30	3,38		
(mm)	Syarat			2 – 4				
	Status	OK	OK	OK	OK	OK		
	Hasil	393	379	344	312	304		
MQ	Syarat		N	/lin 250 kg/mn	n			
(Kg/mm)	Status	OK	OK	OK	OK	OK		

Tabel 9. Hasil Pengujian Marshall Campuran Aspal (Gunung Rumpin)

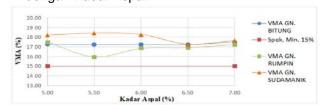
1 3		ипріп)					
Nilai Karak	teristik		K	adar Aspal (%	6)		
Marshall		5,0	5,5	6,0	6,5	7,0	
	Hasil	7,23	4,31	4,12	2,86	1,85	
VIM	Syarat			3 – 5			
(%)	Status	TIDAK OK	ОК	OK	TIDAK OK	TIDAK OK	
	Hasil	17,50	15,96	16,84	16,91	17,25	
VMA	Syarat	Min 15					
(%)	Status	ОК	ОК	ОК	ОК	ок	
	Hasil	58,92	73,07	75,54	83,21	89,29	
VFB	Syarat			Min 65			
(%)	Status	TIDAK OK	OK	ОК	OK	ОК	
	Hasil	996	1064	1141	1213	1310	
Stabilitas (kg)	Syarat			Min 800			
	Status	ОК	OK	ОК	OK	OK	


Nilai Karak	Nilai Karakteristik		Kadar Aspal (%)					
Marshall		5,0	5,5	6,0	6,5	7,0		
	Hasil	2,96	3,73	3,64	4,45	4,45		
Flow	Syarat			2 – 4				
(mm)	Status	OK	ОК	OK	TIDAK OK	TIDAK OK		
	Hasil	341	310	319	273	300		
MQ (Kg/mm)	Syarat		N	/lin 250 kg/mr	m			
	Status	OK	OK	OK	OK	OK		

Tabel 10. Hasil Pengujian Marshall Campuran Aspal (Gunung Sudamanik)

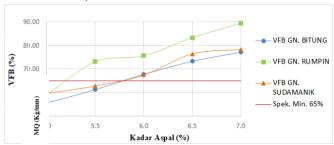
(Carraing t	Sudamanik)						
Nilai Karak			K	adar Aspal (^c	%)		
Marsh	all	5,0	5,5	6,0	6,5	7,0	
	Hasil	7,35	6,87	5,97	4,12	3,86	
VIM	Syarat			3 – 5			
(%)	Status	TIDAK OK	TIDAK OK	TIDAK OK	ОК	ОК	
	Hasil	18,22	18,43	18,29	17,26	17,66	
VMA (%)	Syarat			Min 15			
(70)	Status	OK	OK	OK	OK	OK	
	Hasil	59,64	62,77	67,43	76,35	78,20	
VFB	Syarat	Min 65					
(%)	Status	TIDAK OK	TIDAK OK	ОК	OK	ОК	
	Hasil	1006	986	1140	1233	1310	
Stabilitas	Syarat			Min 800			
(kg)	Status	OK	OK	OK	OK	OK	
	Hasil	2,76	2,78	3,00	3,20	3,29	
Flow (mm)	Syarat			2 – 4			
()	Status	OK	OK	OK	OK	OK	
	Hasil	366	356	381	385	398	
MQ (Kg/mm)	Syarat		N	/lin 250 kg/mr	n		
,	Status	OK	OK	OK	OK	OK	

Adapun pembahasan dari hasil pengujian marshall test/sifat karakteristik marshall adalah sebagai berikut:

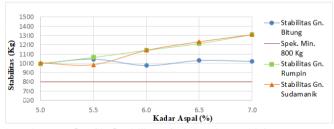

Hubungan VIM (Voids In Mixture) dengan Kadar Aspal.

Gambar 5. Grafik VIM (3 - 5%)

Pada Gambar 5 menunjukan bahwa nilai VIM dari tiga sumber material mengalami penurunan dan juga kenaikan yang signifikan dengan penambahan kadar aspal. Dari setiap campuran aspal dengan tiga material hanya dua kadar aspal pada setiap masing-masing sumber material yang memenuhi spesifikasi yaitu untuk campuran aspal dengan material Gunung Bitung hanya kadar aspal 6,5% dan 7,0%, untuk campuran aspal dengan material Gunung Rumpin hanya kadar aspal 5,5% dan 6,0%, dan untuk campuran aspal dengan material Gunung Sudamanik hanya kadar aspal 6,5% dan 7,0% dimana spesifikasi yang telah ditentukan ada pada batas minimum 3% dan batas maksimum 5%.

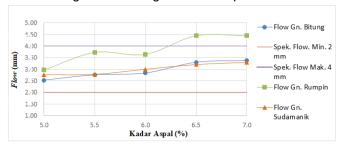

2. Hubungan VMA (Voids In Mineral Agregate) dengan Kadar Aspal.

Gambar 6. Grafik VMA (minimal 15%)


Pada Gambar 6 menunjukan nilai VMA dari tiga sumber material mengalami kenaikan maupun penurunan seiring dengan bertambahnya kadar aspal. Namun kenaikan ataupun penurunan yang terjadi ini memenuhi spesifikasi yang disyaratkan Kementerian Pekerjaan Umum Bina Marga Revisi III, 2010 yaitu 15%. Maka dapat disimpulkan bahwa semua material vaitu material dari Gunung Bitung, Gunung Rumpin, dan gunung Sudamanik yang digunakan dengan lima kadar aspal memenuhi spesifikasi.

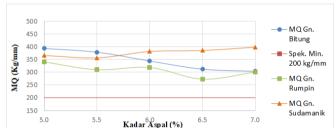
3. Hubungan VFB (Voids Filled With Bitumen) dengan Kadar Aspal.

Pada Gambar 7 menunjukan terjadi kenaikan pada nilai VFB dari tiga sumber material. Namun, nilai VFB pada kadar aspal 5.0% dan 5.5% untuk material dari Gunung Bitung dan Gunung Sudamanik serta pada kadar aspal 5,0% untuk ,aterial Gunung Rumpin tidak memenuhi spesifikasi dimana batas minimum yaitu 65%.


Hubungan Stabilitas dengan Kadar Aspal.

Gambar 8. Grafik Stabilitas (minimal 800 Kg)

Pada Gambar 8 memnujukan bahwa nilai stabilitas pada campuran aspal dari tiga sumber material yaitu material dari Gunung Bitung, Gunung Rumpin, dan Gunung Sudamanik untuk setiap kadar aspal mengalami kenaikan dan penurunan. Namun, kenaikan dan penurunan yang terjadi memenuhi spesifikasi dimana nilai stabilitas pada setiap kadar aspal berada diatas nilai spesifikasi yaitu minimum 800 kg.


5. Hubungan Flow dengan Kadar Aspal.

Gambar 9. Grafik Flow (2mm - 4mm)

Pada Gambar 9 nilai flow pada penggunaan campuran aspal material Gunung Rumpin untuk kadar aspal 6,5% tidak masuk dalam spesifikasi dan 7,0% penurunan mengalami kenaikan dan seirina penambahan kadar aspal. Namun, untuk dua sumber material yaitu Gunung Bitung dan Gunung Rumpin semua kadar aspal masuk dalam spesifikasi dan memenuhi batas minimum 2 mm dan batas maksimum 4 mm sesuai dengan spesifikasi Kementerian Pekerjaan Umum Bina Marga Revisi III (2010).

Hubungan MQ (Marshall Quotient) dengan Kadar Aspal.

Gambar 10. Grafik Marshall Quotient (minimal 250 Kg/mm)

Pada Gambar 10 nilai MQ untuk campuran aspal dari tiga sumber material mengalami penurunan dan kenaikan seiring dengan penambahan kadar aspal. Penurunan nilai MQ ini, disebabkan nilai flow yang meningkat dengan kadar aspal yang meningkat pula begitu juga dengan nilai MQ yang mengalami kenaikan sebab nilai flow yang menurun dengan kadar aspal yang meningkat. Namun, nilai MQ dari campuran aspal dengan 3 material ini memenuhi spesifikasi sesuai dengan Kementerian Pekerjaan Umum Bina Marga Revisi III (2010) yaitu minimum yang harus dicapai adalah 200 kg/mm.

KESIMPULAN

Dari hasil pengujian didapatkan bahwa campuran aspal dengan material dari 3 sumber yang berbeda dilihat dari keseluruhan nilai karakteristik marshall nilainya berada diatas nilai dari spesifikasi ketentuan yang ditetapkan oleh Spesifikasi Bina Marga 2010, revisi III. Karakteristik marshall menunjukan bahwa campuran aspal dengan material Gunung Bitung dan Gunung Sudamanik memiliki kinerja yang lebih baik. Berdasarkan faktor kinerja campuran didapat kadar aspal optimum (KAO) yaitu Gunung Bitung (6,65%), Gunung Rumpin (5,58%), dan Gunung Sudamanik (6,65%) sehingga dari hasil

nilai analisis yang dilihat dari karakteristik marshall diketahui bahwa material dari Gunung Sudamanik memiliki stabilitas yang paling baik berdasarkan kadar aspal optimum (KAO), maka material dari Gunung Sudamanik dapat dijadikan acuan agregat lokal untuk penggunaan pembangnan infrastuktur di wilayahnya.

UCAPAN TERIMA KASIH

Penulis mengucapkan terimakasih yang sebesarbesarnya kepada AMP PT. Prayoga Pertambangan dan Energi yang telah memberikan kesempatan untuk melakukan penelitian di laboratorium PT. Prayoga Pertambangan dan Energi dan juga memberikan bahan material untuk keperluan Tugas Akhir.

Dan juga terimakasih kepada PT. Sudamanik dan PT. Lotus SG Lestari yang telah memberikan material agregat untuk penelitian ini.

REFERENSI

- Anonim. (2017). Job Mixing Formula (JMF) AC-WC Grade C, AMP PT. Prayoga Pertambangan dan Energi, Bogor,
- Arthur W, Peter S, Kendrick, Roy A, Malcolm C, . (2003). Teori dan Praktek, Edisi ke-4. Jakarta: Erlangga.
- Departemen Pekerjaan Umum Direktorat Bina Marga. (2010). Buku XII Spesifikasi Teknis. Jakarta: Kementerian Pekerjaan Umum.
- Hendrik, Arief S, Mashuri. (2014). Karakteristik Campuran Aspal Porus Dengan Agregat Dari Loli dan Taipa: Universitas Jember.
- Shell Bitumen. (1990). The Shell Bitumen Hand Book, Shell Bitumen UK, UK.
- SNI ASTM C117-2012. Metode Uji Bahan yang Lebih Halus dari Saringan 75 um (No. 200) dalam Agregat Mineral dengan Pencucian. Jakarta: Badan Standarisasi Nasional, 2012.
- SNI ASTM C136-2012. Metode Uji Untuk Analisis Saringan Agregat Halus dan Agregat Kasar. Jakarta: Badan Standarisasi Nasional, 2012.
- SNI 03-6723-2002. Spesifikasi Bahan Pengisi Pengisi Untuk Campuran Beraspal. Jakarta: Badan Standarisasi Nasional, 2002.
- SNI 06-2489-1991. Metode Pengujian Campuran Aspal Jakarta: dengan Alat Marshall. Badan Standarisasi Nasional, 1991.
- Sukirman, Silvia. (1999). Perkerasan Lentur Jalan Raya: Bandung: Nova.
- Sukirman, Silvia. (2003). Beton Aspal Campuran Panas: Jakarta: Yayasan Obor Indonesia
- Sukirman, Silvia. (2007). Beton Aspal Campuran Panas: Jakarta: Yayasan Obor Indonesia