ROAD ELECTION DECISION SUPPORT SYSTEM TO WORK IN EAST JAKARTA

Paundra Nabillah⁻¹, Priangga Sotya W.⁻², Bintang Indrawan⁻³, Desti Fitriati⁻⁴ Program Study Informatics Engineering Faculty Of Engineering Pancasila University Jakarta paundraharahap@gmail.com⁻¹, prianggasotya@gmail.com⁻², backsnap297@gmail.com⁻³, desti.fitriati@univpancasila.ac.id⁻⁴

Abstract— The increase in the number of roads is increasingly related to the number of kendarana volumes that must be carried out. This condition results in roads, especially the East Jakarta area, causing a buildup at certain titk points. This study aims to determine the best road to travel in order to avoid severe congestion alternatives. The trick is to give the decision to choose the road to be traveled smoothly with a low level of busyness of the road at least jammed under normal conditions. To determine the best path based on many criteria considerations, where the criteria can be measured quantitatively with the Exponential method, method Simple Additive Weighting (SAW) and method Weighted Product (WP). 3 Methods are used to numerically assess the priority value of each selected path, because this method is able to prioritize optimal alternatives. Usingcalculations can make it easier for vehicle users, especially the East Jakarta area, to choose roads that have low density for various types of problems to be analyzed. This test was conducted on 3 road datasets in 2014. With this system will help the path to make decisions more subjectively.

Keywords—Decision Support System (SPK), Road selection, Exponential Method, Simple Additive Weighting (SAW) and Weighted Product (WP)

I. INTRODUCTION

Technological advances that are increasingly rapid today, are also very influential on the development of technology offering comfort, convenience, economy and realtime. The impact is that all kinds of information needs that were previously very difficult to obtain, are now able to be accessed by the public through supporting facilities, one of which is internet facilities accessed through Personal Computers (PC). Along with the development of this technology, a technology is also developed that is able to adopt human processes and ways of thinking, namely Artificial Intelligence technology. For this reason, from the various information above, the author intends to create a decision support system that can help bermorot kendarana users to obtain information about determining the road to pass without traffic jams. Making this decision in various ways or methods, according tothe needs of the user. Theetode that can be used are the Exponential method, the Simple Additive Weighting (SAW) and the Weighted Product (WP). These methods were developed to assist decision makers in making the best decisions on several decision alternatives to obtain an accurate and optimal decision. The Department of Transportation has the authority to carry out duties related to the management of road locations. The challenge that occurs in this era of globalization is the change in services according to the needs of the community. However, in the activities of increasing road priorities, the Department of Transportation still uses manual methods. Such manual decision-making mechanisms have fundamental flaws in the subjectivity of both decisions, experiences, and pressures of others so that decisions do not reflect effective decisions. This situation is certainly very inefficient in realizing improved road repair performance. This Decision Making System (SPK) method is able to determine accurate decision alternatives based on criteria such as road conditions, volume, road influence on the economy, and interests. The SPK methods that suit the needs of prioritizing road repairs are the Exponential Method, the Simple Additive Weighting (SAW) and the Weighted Product (WP).

II. RESEARCH METHODS

Figure 1. Research method flowchart

III. DATA ANALYSIS

In this case will find thebest alternative way to work. After conducting data research, we have found criteria data, namely congestion type, location, vehicle type, and description with the criteria data will then be calculated using the Exponential Comparison Method (MPE), *Weight Product (WP) Method*, Simple *Additive Weighting (SAW)* Method to get results from the data we process.

A. Exponential Comparison Method

The Exponential Comparison Method (MPE) is a method for determining priority order decision alternatives with multiple criteria. This technique is used as a helper for individual retrieval the decision to use a well-defined design model at the process stage. Different with the Bayes method, MPE will produce alternative values with more contrasting differences.

The formula for calculating the total value of each decision choice is as follows:

Total Nilai
$$TNi = \sum_{j=1}^{m} (RKij) B_j$$

Information :

TNi	: The total of value -i
RKij	: The degree of relative importance of the -j criterion
Bj	: The degree of importance of the -j decision criteria
n	: Number of decision choices
m	: Number of decision criteria

	Table 1. Data Criteria		Prumpung (Viaduer	2		
Code criteria	Name criteria	Weight	_	Park)		
C1	Types on congestion	3	Long time	Officers	2	2
C2	Vehicle type	2	- stuck	Contra Flow	3	-
	**		-	Conna FIOW	5	

C3	Number of	3
	Interesection	
	locations	
C4	Long time stuck	2

Table 2. Congestion Level			
Level	Information		
1	Usual		
2	Dense		
3	Densely creeping		
4	Bad		

	Table 3. Criteri	a value data	
Criterion	Sub criteria	Value	Weight
Types on	Office 4		3
congestion	Congestion		_
-	Large Vehicle	3	
	Congestion		
	Public	4	-
	Transport		
	Congestion		
	Congestion of	2	-
	Goods		
	transport		
	vehicles		
Vehicle type	Private	4	2
51	Vehicles		
	Truck Base	2	-
	Intercity and	3	
	interprovincial		
	(AKAP) buses		
	Goods Car	1	-
Number of	Jl Raya	4	3
Interesection	Pemuda (SD		
locations	Tarakanita,		
	Labscool)		_
	Jl. Raya	3	-
	Bogor (Front		
	of Ps. Induk		
	Kramat Jati)		_
	Jl. Raya	4	
	kalimalang		
	(Pangklan		
	Jati)		-
	Prumpung	2	
	(Viaducr		
	Park)		
Long time	Officers	2	2
stuck	Required		_
	Contra Flow	3	

	Table 4. Calculation				
Code	Name	Sub criteria	MPE		
Alternative	criteria				
A1	Types on	Large Vehicle	104		
	congestion	Congestion			
	Vehicle type	Truck Base			
	Number of	Jl Raya			
	Interesection	Pemuda (SD			
	locations	Tarakanita,			
		Labscool)			
	Long time stuck	Contra Flow			
A2	Types on	Public	104		
	congestion	Transport			
		Congestion			
	Vehicle type	Intensity and			
		interprovincial			
		(AKAP) buses			
	Number of	Prumpung			
	Interesection	(Viaducr			
	locations	Park)			
	Long time	Officers			
	stuck	Required			
A3	Types on	Office	97		
	congestion	Congestion			
	Vehicle type	Private			
	51	Vehicles			
	Number of	Jl. Rava			
	Interesection	kalimalang			
	locations	(Pangklan			
		Jati)			
	Long time stuck	Contra Flow			
A4	Types on	Congestion of	77		
	congestion	Goods			
	8	transport			
		vehicles			
	Vehicle type	Goods Car			
	Number of	Il Rava			
	Interesection	Bogor (Front			
	locations	of Ps. Induk			
	iocations	Kramat Jati)			
	Long time	Officers			
	stuck	Required			

** Limit of alternative value of roads worth taking 100

The conclusion from the calculation results obtained the best alternative value or the one that is worth taking is A3 with the acquisition of MPE value 105

B. Weighted Product

The Weighted Product method uses multiplication to connect attribute rating, where the rating of each attribute must be raised to the first rank with the weight of the attribute concerned. This process is the same as the process normalization. (Kusumadewi 2006)

The determination of the normalized weight value with the symbol W can be seen in the following formula :

$$w_j = \frac{w_j}{\sum w_j}$$
 (3)

The determination of the value of the vector S can be seen in the following formula:

$$S_{i} = \prod_{j=1}^{n} x^{w_{j}}$$

Information :

S : Alternative preference by analogy as vector S

x : Criterion value

i : Alternatives

j : Criteria n : Many criteria

The determination of the value of the vector V can be seen in the following formula:

$$V_{i} = \frac{\prod_{j=1}^{n} x_{ij}^{w_{j}}}{\prod_{j=1}^{n} (x_{ij}^{*})_{w_{j}}}$$

V : Alternative preference with vector analogy V

x : Criterion value

w : Weight of criteria

i : Alternatives

j : Criteria

n : Many criteria

Table 5. Data Criteria				
Code criteria	Name criteria	Category		
C1	Types on	Cost		
	congestion			
C2	Vehicle type	Cost		
C3	Number of	Cost		
	Interesection			
	locations			
C4	Long time stuck	Benefits		

Table 6. Linkert Scale

1	Very Low
2	Low
3	Enough
4	High
5	Very High

Table 7. Data Alternative				
Code Alternative	Alternative Names			
A1	Jl Raya Pemuda (SD			
	Tarakanita, Labscool)			
A2	Jl. Raya Bogor (Front of Ps.			
	Induk Kramat Jati)			
A3	Jl. Raya kalimalang			
	(Pangklan Jati)			
A4	Prumpung (Viaducr Park)			

Table 8. Consideration				
Street		Consid	eration	
Names	Types of	Vehicle	Number of	Long
	congestion	type	Intersection	time
			locations	stuck
Jl Raya	150	105	90	30
Pemuda				
(SD				
Tarakanita,				
Labscool)				
Jl. Raya	270	200	120	20
Bogor				
(Front of				
Ps. Induk				
Kramat				
Jati)				
Jl. Raya	175	125	60	20
kalimalang				
(Pangklan				
Jati)				
Prumpung	125	100	80	15
(Viaducr				
Park)				

Table 9. Vector value S of WP			
S	Value of S		
S1	0.047		
S2	0.062		
S3	0.057		
S4	0.039		
Total	0.205		

Table 10. Vector value V of WP		
V	Value of V	
V1	0.229	
V2	0.302	
V3	0.278	
V4	0.190	
Total	0.999	

The results of the vector value V above show the highest value in V2, where V2 represents the alternative A2 with the highest value.

C. Simple Additive Weighting (SAW)

Method Simple Additive Weight (SAW), often also known with the term weighted sum method. The basic concept of the Simple Additive Weight method (SAW) is looking for a weighted sum of the performance rating on each alternative on all attributes. (Fishburn and McCrimon in Munthe 2013)

$$r_{IJ} = \{ \frac{\frac{x_{ij}}{Max_i x_{ij}}}{\frac{Min_i x_{ij}}{x_{ij}}} \}$$

Information :

Rij : Normalized perfromance rating value Xij : The attribute value that each criterion has Max xij : The greatest value of each criterion Min xij : The smallest value of each criterion

The preference value for each alternative (Vi) can be seen in the following equation

$$Vi = \sum_{j=1}^{n} w_j r_j$$

Information :

Vi : Rankings for ech alternative

wj : The wight value of each criterion

rij: Normalized performance rating value

Table 11. Data Citeria					
Code	Name criteria	Category	Weight		
criteria					
C1	Types on	Cost	30		
	congestion				
C2	Vehicle type	Cost	15		
C3	Number of	Cost	35		
	Interesection				
	locations				
C4	Long time	Benefits	20		
	stuck				
	Table 12. D	ata Crips			
Code	Name	Crips	Value		
criteria	Criteria				
C1	Types of	3	65		
	congestion				
C1	Types of	5	85		
	congestion				

C1	Types of	6	95	
	congestion			
C1	Types of	4	75	
	congestion			
C2	Vehicle type	8	85	
C2	Vehicle type	7	75	
C2	Vehicle type	6	65	
C2	Vehicle type	9	95	
C3	Number of	4	75	
	Intersection			
	locations			
C3	Number of	5	95	
	Intersection			
	locations			
C3	Number of	2	45	
	Intersection			
	locations			
C3	Number of	3	55	
	Intersection			
	locations			
C4	Long time	7 minutes	75	
	stuck			
C4	Long time	6 minutes	55	
	stuck			
C4	Long time	8 minutes	85	
	stuck			
C4	Long time	9 minutes	95	
	stuck			

Table 13	3. Data Alternative
Code Alternative	Alternative Names
A1	Jl Raya Pemuda (SD
	Tarakanita, Labscool)
A2	Jl. Raya Bogor (Front of Ps.
	Induk Kramat Jati)
A3	Jl. Raya kalimalang
	(Pangklan Jati)
A4	Prumpung (Viaducr Park)

Table 14. Data Value Alternative				
	A1	A2	A3	A4
X1	3	8	4	7 minutes
X2	4	9	3	9 minutes
X3	6	6	2	8 minutes
X4	5	7	5	6 minutes

1 able 13. Normanzation Stage	Table	15.	Normalization Stage	
-------------------------------	-------	-----	---------------------	--

			0	
	A1	A2	A3	A4
X1	1	0.76	0.73	0.78
X2	0.86	0.68	1	0.57
X3	0.68	0.86	0.64	0.89
X4	0.76	1	0.57	0.57

		Table 1	6. Ranki	ng Stage	;	
	A1	A2	A3	A4	Total	Rank
Weight	30	15	35	20	-	-
X1	1	0.76	0.73	0.78	82.55	2
X2	0.86	0.68	1	1	91	1
X3	0.68	1	0.64	0.89	75.6	3
X4	0.76	0.86	0.57	0.57	67.5	4

From the results of the ranking, it can be seen that the alternative X2 got the largest score, namely 91 So it becomes rank 1 (best alternative).

IV. RESULTS

From the Exponential Comparison Method (MPE) Algorithm, Weight Product (WP) Method, Simple Additive Weighting (SAW) Method, we can see the results of these calculations to determine which is the best path.

	Table 17.	Results	
Street		Ranking	
Names	Exponential	Weight	Simple
	Comparison	Product	Additive
	Method		Weighting
Jl Raya	3	2	2
Pemuda (SD			
Tarakanita,			
Labscool)			
Jl. Raya	1	1	1
Bogor			
(Front of Ps.			
Induk			
Kramat Jati)			
Jl. Raya	2	3	3
kalimalang			
(Pangklan			
Jati)			
Prumpung	3	4	4
(Viaducr			
Park)			

V. CONCLUSION

Based on the research that has been carried out, the following conclusions can be drawn:

1) With this decision support system, it can help to determine one of the opportunities for workers or road users in the East Jakarta area right, namely there are 4 road choices according to the real data we take on a website with five best alternative criteria based on the weight scale value of the criteria determined by the user.

2) By using the 3 methods that we use the road problems we face can help to determine the best road, so that the road that we determine as the right decision is **JI Raya Bogor (Depan ps. Induk Kramat Jati)** is used as an alternative road that has the best chance.

References

[1] A. Rikki, M. Marbun, and J. R. Siregar, "Sistem Pendukung Keputusan Penerimaan Karyawan Dengan Metode SAW Pada PT. Karya Sahata Medan," J. Informatics Pelita Nusant., vol. 1, no. 1, pp. 38–46, 2016.

[2] E. Ismanto and N. Effendi, "Sistem Pendukung Keputusan Penerimaan Karyawan Dengan Metode Simple Additive Weighting (SAW)," SATIN - Sains dan Teknol. Inf., vol. 3, no. 1, pp. 1–9, 2017, doi: 10.33372/stn.v3i1.208.

[3] R. Helilintar, W. W. Winarno, and H. Al Fatta, "Penerapan Metode SAW dan Fuzzy Dalam Sistem Pendukung Keputusan Penerimaan Beasiswa," Creat. Inf. Technol. J., vol. 3, no. 2, p. 89, 2016, doi: 10.24076/citec.2016v3i2.68.

[4] E. Yulianti and F. Juwita, "Sistem Pendukung Keputusan Pemilihan Tempat Kuliner di Kota Padang Menggunakan Metode Perbandingan Eksponensial (MPE)," J. TEKNOIF, vol. 4, no. 2, pp. 51–58, 2016.

[5] M. Nashrullah Irfan, G. Abdillah, and F. Renaldi, "Sistem Pendukung Keputusan untuk Rekomendasi Promosi Jabatan ... (Nashrullah dkk.)," Sist. Pendukung Keputusan, vol. 5, no. 1, pp. 196–201, 2015.

[6] E. Badar Sambani, D. Mulyana, I. Maulana, S. Tasikmalaya, and J. Teknik Informatika, "RE Martadinata No. 272 A Indihiang," J. Appl. Intell. Syst., vol. 1, no. 2, p. 3, 2016.

[7] D. Warasto, "Sistem Pendukung Keputusan Evaluasi Kinerja Mahasiswa Dengan Metode Profile," J. Inform., vol. 10, no. 1, pp. 1180–1188, 2016, doi: 10.26555/jifo.v10i1.a3350.

[8] M. Goretti, P. Menggunakan, and M. Saw, "Sistem Pendukung Keputusan Pemilihan Guru Terbaik Pada Smk," vol. 3, no. July, pp. 136–157, 2016.

[9] M. Masdar, "... Pendukung Keputusan Pemberian Kredit Dengan Metode Pebandingan Eksponensial Pada Bank Perkreditan Rakyat Kota ...," 2016, [Online]. Available: https://repository.wicida.ac.id/191/1/1143147 Sarjana TI.pdf

[10] I. Laengge, H. F. Wowor, and M. D. Putro, "Sistem Pendukung Keputusan Dalam Menentukan Dosen Pembimbing

Skripsi," J. Tek. Inform., vol. 9, no. 1, 2016, doi: 10.35793/jti.9.1.2016.13776.