REVIEW KARAKTERISTIK MEKANIK DAN TOXICITY CHARACTERISTIC LEACHING PROCEDURE BETON GEOPOLIMER
Abstract views: 847 | pdf downloads: 780
Abstract
Beton Geopolimer merupakan beton yang menggunakan material anorganik produk sampingan hasil limbah padat industri yang disintesis melalui proses polimerisasi seperti fly ash, terak besi, terak nikel, dan material lainnya yang mengandung unsur Alumunium (Al) dan Silika (Si) yang tinggi. Produksi 1 ton semen Portland menghasilkan emisi gas CO2 sebesar 1 ton ke atmosfer sehingga dapat membahayakan lingkungan seperti pemanasan global. Tujuan dari studi literatur ini adalah untuk menunjukan bagaimana karakteristik mekanik pada beton geopolimer dalam penggunaan 100% produk sampingan limbah industri (ferrous dan non-ferrous) sebagai pengganti semen Portland sepenuhnya pada beton konvensional, serta meninjau dampak lingkungan yang ditimbulkan akibat penggunaan limbah tersebut dengan menggunakan analisis TCLP. Toxicity Characteristic Leaching Procedure (TCLP) merupakan prosedur untuk mengetahui kadar logam berat pada produk sampingan limbah industri (ferrous dan non-ferrous) yang dapat larut dan dapat mencemari lingkungan. Studi pustaka yang membahas material anorganik mengenai beton geopolimer secara holistik masih sedikit. Beberapa faktor yang dapat memengaruhi karakteristik mekanik beton geopolimer antara lain proporsi campuran, penggunaan admixture, pemilihan material anorganik, metode perawatan dan durasi perawatan, dan rasio larutan alkali sebagai aktivator. Proporsi campuran yang tepat dapat menghasilkan workability yang baik, kuat tekan, dan kuat tarik belah yang tinggi. Metode dan durasi perawatan dengan pemanasan (oven curing) mampu menghasilkan kekuatan mekanik yang lebih besar dibanding dengan metode perawatan suhu ruangan. Studi literatur ini diharapkan dapat memberikan pedoman dalam pengembangan beton geopolimer kedepannya bagi para peneliti dan industri.
References
Abdul Sani, M. F. A., Muhamad, R., & Mo, K. H. (2020). Effect of Ground Granulated Blast Furnace Slag as Partial Replacement in Fly Ash-Based Geopolymer Concrete. IOP Conference Series: Materials Science and Engineering, 712(1). https://doi.org/10.1088/1757-899X/712/1/012002
Adam, A. A., & Horianto. (2014). The effect of temperature and duration of curing on the strength of fly ash based geopolymer mortar. Procedia Engineering, 95(Scescm), 410–414. https://doi.org/10.1016/j.proeng.2014.12.199
Bouaissi, A., Li, L. yuan, Al Bakri Abdullah, M. M., & Bui, Q. B. (2019a). Mechanical properties and microstructure analysis of FA-GGBS-HMNS based geopolymer concrete. Construction and Building Materials, 210, 198–209. https://doi.org/10.1016/j.conbuildmat.2019.03.202
Bouaissi, A., Li, L. yuan, Al Bakri Abdullah, M. M., & Bui, Q. B. (2019b). Mechanical properties and microstructure analysis of FA-GGBS-HMNS based geopolymer concrete. Construction and Building Materials, 210, 198–209. https://doi.org/10.1016/j.conbuildmat.2019.03.202
Cao, R., Li, B., You, N., Zhang, Y., & Zhang, Z. (2018). Properties of alkali-activated ground granulated blast furnace slag blended with ferronickel slag. Construction and Building Materials, 192, 123–132. https://doi.org/10.1016/j.conbuildmat.2018.10.112
Chen, Z., Li, J. S., Zhan, B. J., Sharma, U., & Poon, C. S. (2018). Compressive strength and microstructural properties of dry-mixed geopolymer pastes synthesized from GGBS and sewage sludge ash. Construction and Building Materials, 182, 597–607. https://doi.org/10.1016/j.conbuildmat.2018.06.159
Chindaprasirt, P., Chareerat, T., & Sirivivatnanon, V. (2007). Workability and strength of coarse high calcium fly ash geopolymer. Cement and Concrete Composites, 29(3), 224–229. https://doi.org/10.1016/j.cemconcomp.2006.11.002
Davidovits, J. (1991). Geopolymers - Inorganic polymeric new materials. Journal of Thermal Analysis, 37(8), 1633–1656. https://doi.org/10.1007/BF01912193
Davidovits, J., & Comrie, D. (1988). Long term durability of hazardous toxic and nuclear waste disposals. 1st European Conference on Soft Mineralurgy, Compiegne, France, 1(November), 125–134. http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Long+term+durability+of+hazardous+toxic+and+nuclear+waste+disposals#0
Deb, P. S., Nath, P., & Sarker, P. K. (2014). The effects of ground granulated blast-furnace slag blending with fly ash and activator content on the workability and strength properties of geopolymer concrete cured at ambient temperature. Materials and Design, 62, 32–39. https://doi.org/10.1016/j.matdes.2014.05.001
Demie, S., Nuruddin, M. F., & Shafiq, N. (2013). Effects of micro-structure characteristics of interfacial transition zone on the compressive strength of self-compacting geopolymer concrete. Construction and Building Materials, 41(2013), 91–98. https://doi.org/10.1016/j.conbuildmat.2012.11.067
Duxson, P., Fernández-Jiménez, A., Provis, J. L., Lukey, G. C., Palomo, A., & Van Deventer, J. S. J. (2007). Geopolymer technology: The current state of the art. Journal of Materials Science, 42(9), 2917–2933. https://doi.org/10.1007/s10853-006-0637-z
Farhan, N. A., Sheikh, M. N., & Hadi, M. N. S. (2019). Investigation of engineering properties of normal and high strength fly ash based geopolymer and alkali-activated slag concrete compared to ordinary Portland cement concrete. Construction and Building Materials, 196, 26–42. https://doi.org/10.1016/j.conbuildmat.2018.11.083
Ferdous, W., Manalo, A., Khennane, A., & Kayali, O. (2015). Geopolymer concrete-filled pultruded composite beams - Concrete mix design and application. Cement and Concrete Composites, 58(2015), 1–13. https://doi.org/10.1016/j.cemconcomp.2014.12.012
Hardjito, D., & Rangan, B. V. (2005). Development and Properties of Low-calcium Fly Ash Based Geopolymer LOW-CALCIUM FLY ASH-BASED GEOPOLYMER CONCRETE By Faculty of Engineering Curtin University of Technology. January, 48.
Hardjito, D., Wallah, S. E., Sumajouw, D. M. J., & Rangan, B. V. (2004). On the development of fly ash-based geopolymer concrete. ACI Materials Journal, 101(6), 467–472. https://doi.org/10.14359/13485
Hassan, A., Arif, M., & Shariq, M. (2019). Use of geopolymer concrete for a cleaner and sustainable environment – A review of mechanical properties and microstructure. Journal of Cleaner Production, 223, 704–728. https://doi.org/10.1016/j.jclepro.2019.03.051
Jang, J. G., Ahn, Y. B., Souri, H., & Lee, H. K. (2015). A novel eco-friendly porous concrete fabricated with coal ash and geopolymeric binder: Heavy metal leaching characteristics and compressive strength. Construction and Building Materials, 79, 173–181. https://doi.org/10.1016/j.conbuildmat.2015.01.058
Jawahar J. G, M. G. (2015). Strength properties of fly ash and GGBS based geo-polymer concrete. International Journal of ChemTech Research, 9(3), 350–356.
Jithendra, C., & Elavenil, S. (2019). Role of superplasticizer on GGBS based Geopolymer concrete under ambient curing. Materials Today: Proceedings, 18, 148–154. https://doi.org/10.1016/j.matpr.2019.06.288
Kirschner, A. V., & Harmuth, H. (2004). Investigation of geopolymer binders with respect to their application for building materials. Ceramics - Silikaty, 48(3), 117–120.
Kong, D. L. Y., Sanjayan, J. G., & Sagoe-Crentsil, K. (2008). Factors affecting the performance of metakaolin geopolymers exposed to elevated temperatures. Journal of Materials Science, 43(3), 824–831. https://doi.org/10.1007/s10853-007-2205-6
Kubba, Z., Fahim Huseien, G., Sam, A. R. M., Shah, K. W., Asaad, M. A., Ismail, M., Tahir, M. M., & Mirza, J. (2018). Impact of curing temperatures and alkaline activators on compressive strength and porosity of ternary blended geopolymer mortars. Case Studies in Construction Materials, 9, e00205. https://doi.org/10.1016/j.cscm.2018.e00205
Kusbiantoro, A., Nuruddin, M. F., Shafiq, N., & Qazi, S. A. (2012). The effect of microwave incinerated rice husk ash on the compressive and bond strength of fly ash based geopolymer concrete. Construction and Building Materials, 36, 695–703. https://doi.org/10.1016/j.conbuildmat.2012.06.064
Lloyd, N. A., & Rangan, B. V. (2010). Geopolymer concrete with fly ash. 2nd International Conference on Sustainable Construction Materials and Technologies, 7, 1493–1504.
McLellan, B. C., Williams, R. P., Lay, J., Van Riessen, A., & Corder, G. D. (2011). Costs and carbon emissions for geopolymer pastes in comparison to ordinary portland cement. Journal of Cleaner Production, 19(9–10), 1080–1090. https://doi.org/10.1016/j.jclepro.2011.02.010
Mehta, A., & Siddique, R. (2018). Sustainable geopolymer concrete using ground granulated blast furnace slag and rice husk ash: Strength and permeability properties. Journal of Cleaner Production, 205, 49–57. https://doi.org/10.1016/j.jclepro.2018.08.313
Nath, P., & Sarker, P. K. (2014). Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition. Construction and Building Materials, 66, 163–171. https://doi.org/10.1016/j.conbuildmat.2014.05.080
Nath, P., Sarker, P. K., & Rangan, V. B. (2015). Early age properties of low-calcium fly ash geopolymer concrete suitable for ambient curing. Procedia Engineering, 125, 601–607. https://doi.org/10.1016/j.proeng.2015.11.077
Neupane, K. (2018). High-Strength Geopolymer Concrete- Properties, Advantages and Challenges. Advances in Materials, 7(2), 15. https://doi.org/10.11648/j.am.20180702.11
Nuaklong, P., Sata, V., & Chindaprasirt, P. (2018). Properties of metakaolin-high calcium fly ash geopolymer concrete containing recycled aggregate from crushed concrete specimens. Construction and Building Materials, 161, 365–373. https://doi.org/10.1016/j.conbuildmat.2017.11.152
Nuruddin, M. F., Demie, S., Ahmed, M. F., & Shafiq, N. (2011). Effect of superplasticizer and NaOH molarity on workability, compressive strength and microstructure properties of self-compacting geopolymer concrete. World Academy of Science, Engineering and Technology, 51(3), 907–914. https://doi.org/10.5281/zenodo.1062742
Parveen, Singhal, D., Junaid, M. T., Jindal, B. B., & Mehta, A. (2018). Mechanical and microstructural properties of fly ash based geopolymer concrete incorporating alccofine at ambient curing. Construction and Building Materials, 180(2018), 298–307. https://doi.org/10.1016/j.conbuildmat.2018.05.286
Patel, Y. J., & Shah, N. (2018). Enhancement of the properties of Ground Granulated Blast Furnace Slag based Self Compacting Geopolymer Concrete by incorporating Rice Husk Ash. Construction and Building Materials, 171, 654–662. https://doi.org/10.1016/j.conbuildmat.2018.03.166
Rangan, B. V. (2008). FLY ASH-BASED GEOPOLYMER CONCRETE (Column). Engineering Faculty Curtin University of Technology Perth, Australia, 3124–3130. https://doi.org/10.1007/s10853-006-0523-8
Saini, G., & Vattipalli, U. (2020). Assessing properties of alkali activated GGBS based self-compacting geopolymer concrete using nano-silica. Case Studies in Construction Materials, 12, e00352. https://doi.org/10.1016/j.cscm.2020.e00352
Thaarrini, J., & Venkatasubramani, R. (2015). Feasibility Studies on Compressive Strength of Ground Coal Ash Geopolymer Mortar. Periodica Polytechnica Civil Engineering, 59(3), 373–379. https://doi.org/10.3311/ppci.7696
Topark-Ngarm, P., Chindaprasirt, P., & Sata, V. (2015). Setting time, strength, and bond of high-calcium fly ash geopolymer concrete. Journal of Materials in Civil Engineering, 27(7), 1–7. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001157
Umniati, B. S., Risdanareni, P., & Zein, F. T. Z. (2017). Workability enhancement of geopolymer concrete through the use of retarder. AIP Conference Proceedings, 1887(September). https://doi.org/10.1063/1.5003516
Van Den Heede, P., & De Belie, N. (2012). Environmental impact and life cycle assessment (LCA) of traditional and “green” concretes: Literature review and theoretical calculations. Cement and Concrete Composites, 34(4), 431–442. https://doi.org/10.1016/j.cemconcomp.2012.01.004
Venkatesan, R. P., & Pazhani, K. C. (2016). Strength and durability properties of geopolymer concrete made with Ground Granulated Blast Furnace Slag and Black Rice Husk Ash. KSCE Journal of Civil Engineering, 20(6), 2384–2391. https://doi.org/10.1007/s12205-015-0564-0
Vora, P. R., & Dave, U. V. (2013). Parametric studies on compressive strength of geopolymer concrete. Procedia Engineering, 51, 210–219. https://doi.org/10.1016/j.proeng.2013.01.030
Wallah, S. E., & Rangan, B. V. (2006). Low-Cakcium Fly Ash Based. 1–107. https://espace.curtin.edu.au/handle/20.500.11937/34322
Xie, J., Chen, W., Wang, J., Fang, C., Zhang, B., & Liu, F. (2019). Coupling effects of recycled aggregate and GGBS/metakaolin on physicochemical properties of geopolymer concrete. Construction and Building Materials, 226, 345–359. https://doi.org/10.1016/j.conbuildmat.2019.07.311
Yang, T., Yao, X., & Zhang, Z. (2014). Geopolymer prepared with high-magnesium nickel slag: Characterization of properties and microstructure. Construction and Building Materials, 59, 188–194. https://doi.org/10.1016/j.conbuildmat.2014.01.038
Yip, C. K., Lukey, G. C., Provis, J. L., & van Deventer, J. S. J. (2008). Effect of calcium silicate sources on geopolymerisation. Cement and Concrete Research, 38(4), 554–564. https://doi.org/10.1016/j.cemconres.2007.11.001
Copyright (c) 2020 Jurnal Infrastruktur
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.