STUDY OF MODELING AND MAPPING OF TSUNAMI INUNDATION AT TANJUNG SETIA BEACH LAMPUNG PROVINCE BY UTILIZING DELFT3D SOFTWARE
Abstract views: 30 | pdf downloads: 24
Abstract
Tanjung Setia Beach is located in the West Coast area of Lampung Province. This location is very vulnerable of disaster such as tsunami, because it is on the edge of a geologically active continent with a coastline facing the Indian Ocean and distinguished by the confluence of tectonic plates. With such conditions at any time a tsunami disaster can occur and cause damage to the area. One of the weaknesses in the Tanjung Setia coastal tourist area on, West Coast of Lampung Province, is non exist of hazard maps or KRB (Disaster Prone Vulnerability) maps made by the National Center for Volcanology and Disaster Mitigation. Modeling the propagation of tsunami waves by determining the distribution pattern of tsunami waves and implementing several planned wave height values and historical wave height is a basic step of disaster mitigation in the area. Using Delft3D 4.04.01 software based on data and scenario analysis can produce wave propagation in the area. The height and wave period of the plan are calculated using the hindcasting method and are based on the SPM 1984 standard and then used as input in Delft3D modeling software. From the calculation results, the height and wave period of the maximum plan for the 15 year is 3.01 m with a period of 8.21 s, the 25 year is 3.16 m with a period of 8.49 s and the 50 year is 3.37 m with a period of 8.87 s. In addition, historical tsunami wave heights of 3.6 m, 8 m and 15 m are also used as inputs in the Delft3D model. The results of propagation planned wave does not cause a significant tsunami disaster. As a result of wave propagation based on the historical height of tsunamis used, 3.6 m wave does not cause tsunami disasters in the area and take 35 minutes to reach coastal areas, while waves of 8 and 15 meters are able to cause tsunami disasters on land, which takes 27-34 minutes to reach the coast. All three scenarios qualify for model accuracy in shallow seas. From the results of mapping using GIS software, the maximum propagation of the scenario of high waves of 8 meters on land as far as 803 meters and waves of 15 meters as far as 872 m from the coastline.
References
Aswad, I. (2021). Pemodelan Tinggi Gelombang Untuk Kajian Energi Gelombang Laut Di Perairan Barat Provinsi Lampung. Jurnal Ilmiah Teknologi Maritim. 15(2), 75-84.
Deltares, (2015). Delft3D Model Description and Manual. Unesco-IHE Institute for Water Education, Deltares and Delft University of Technology.
Deltares. (2014). Delft3D-WAVE Simulation of Short-Crested Waves with SWAN User Manual. Netherlands: Boussinesqweg.
Mardika, M. G. I., Mashuri, Hakim, D. R. (2024). Studi Modeling dan Mapping Inundasi Tsunami Menggunakan Software Delf3D Studi Kasus Pantai Labuan Jukung. PADURAKSA: Jurnal Teknik Sipil Warmadewa, 58.
Mardika, M. G. I, & Pratama, M. I. (2021). Analisis Pasang Surut Menggunakan Metode Last Square di Wilayah Perairan Muara Sungai Poso. Journal of Infrastructure Planning, and Design .1(2), 1-8.
Fauzi, M. A. R., Mardika, M. G. I., Fatkhurrozi, M., Martino, A. F. H. (2024). Study Re-Analysis of High Wave Deformation in Re-Design Coastal Revetment Protection of Rajabasa Beach Kalianda, Journal of Science and Applicative Technology, 8 (1), 25.
Pratiwi, D., & Fitri, A. (2021). Analisis Potensial Penjalaran Gelombang Tsunami di Pesisir Barat Lampung, Indonesia. Jurnal Teknik Sipil ITP, 8(1). https://doi.org/10.21063/jts.2021.v801.05
Pusat Vulkanologi dan Mitigasi Bencana Geologi. (2020). Pemodelan Inundasi dan Pemetaan Kawasan Rawan Bencana Tsunami. Kementrian Energi dan Sumber Daya Mineral.
Sofiana, R., Wiyono, R. U. A., & Nurtjahjaningtyas, I. (2022). Tsunami Mitigation Strategy at Watu Ulo Beach Based on Numerical Modeling Using Delft3DFlow. UKaRsT, 6(2), 158. https://doi.org/10.30737/ukarst.v6i2.2959.
Susanto, E., Arsyad, M., Subaer, & Setyahagi, A., R. (2021). Pemodelan Waktu Tiba Gelombang Tsunami di Wilayah Pesisir Provinsi Sulawesi Barat. Prosiding Seminar Nasional Fisika PPs UNM. 2, 80-83. http://ojs.unm.ac.id/semnasfisika
Susanto, E., Nuranta, I. & Setyahagi, A. R. (2020). Pemodelan Run – up Tsunami di Wilayah Pesisir Pantai Sulawesi Barat. Buletin GAW Bariri (BGB). 1(2), 87-93.
Tim Pusat Gempabumi dan Tsunami. (2018). Katalog Tsunami Indonesia Tahun 416-2018. Jakarta: Badan Meteorologi Klimatologi dan Geofisika. ISBN 972-602-52407-0-6.
Triatmodjo, B. (1999). Teknik Pantai. Beta Offset, Yogyakarta.
Wahyu, R. O., Djamaluddin, R., Mamuaya, G. E., Yatimantoro, T., & Priyobudi. (2018). Pemodelan Inundasi Tsunami di Sepanjang Pesisir Kota Manado Akibat Gempabumi M8,5 di Zona Subduksi Sulawesi Utara. Jurnal Meteorologi dan Geofisika, 19 (1), 13-18.
Wang, X., (2009). User Manual For Comcot Version 1.7 (First Draft). Cornell University. USA.
Copyright (c) 2024 Jurnal Infrastruktur
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.