Klasifikasi Gender Berdasarkan Fingerprint Menggunakan Metode Naive Bayes Classifier

Gender Classification Based on Fingerprint Using Naive Bayes Classifier Method

  • Cindhy Herumawan Sekolah Tinggi Teknologi Duta Bangsa
  • Efi Anisa Sekolah Tinggi Teknologi Duta Bangsa
DOI: https://doi.org/10.35814/asiimetrik.v5i1.3801
Abstract views: 129 | pdf downloads: 229
Keywords: Naïve Bayes Classifier, normal distribution, deviation

Abstract

No two fingerprints are identical, as everyone has their own characteristics. The most fundamental problem lies in the results of the fingerprint image, typically due to inconsistencies in the emphasis of the fingerprint and the position of the fingerprint, resulting in inconsistencies in the thickness of the black line and shifting positions, which negatively impact the overall performance of the system. To solve this issue, research is required on a classifier that assumes all attributes exist independently. The NBC (Naïve Bayes Classifier) is a classifier based on the assumption that all attributes are independent. The NBC method for gender classification based on fingerprints consists of three steps. The initial step is to evaluate the quality of the image to be processed. This is demonstrated by the consistency of the grayscale values, which are not skewed when converted to a binary image. The second is the selection of data that exhibits no data deviation, which also leads to errors in the classification procedure that follows. With the existence of machine learning, class-based measurement formulations can be acquired through training. Even with unbalanced data, it is preferable to use NBC for classification purposes.

References

Al Rivan, M.E., Rachmat, N. dan Ayustin, M.R. (2020) ‘Klasifikasi Jenis Kacang-Kacangan Berdasarkan Tekstur Menggunakan Jaringan Syaraf Tiruan’, Jurnal Komputer Terapan, 6(1), hal. 89–98.

Godara, N. dan Kumar, S. (2019) ‘Opinion Mining using Machine Learning Techniques’, International Journal of Engineering and Advanced Technology (IJEAT), 9(2), hal. 4287–4292.

Gornale, S.S., Basavanna, M. dan Kruthi, R. (2017) ‘Fingerprint Based Gender Classification Using Local Binary Pattern’, International Journal of Computational Intelligence Research, 13(2), hal. 261–271.

Gungadin, S. (2007) ‘Sex determination from fingerprint ridge density’, Internet Journal of Medical Update, 2(2), hal. 4–7.

Handayani, F. dan Pribadi, F.S. (2015) ‘Implementasi algoritma naive bayes classifier dalam pengklasifikasian teks otomatis pengaduan dan pelaporan masyarakat melalui layanan call center 110’, Jurnal Teknik Elektro, 7(1), hal. 19–24.

Kusumawati, R., D’arofah, A. dan Pramana, P.A. (2019) ‘Comparison Performance of Naive Bayes Classifier and Support Vector Machine Algorithm for Twitter’s Classification of Tokopedia Services’, in Journal of Physics: Conference Series. IOP Publishing, p. 012016.1-012016.10.

Siregar, N.C., Siregar, R.R.A. dan Sudirman, M.Y.D. (2020) ‘Implementasi Metode Naive Bayes Classifier (NBC) Pada Komentar Warga Sekolah Mengenai Pelaksanaan Pembelajaran Jarak Jauh (PJJ)’, Jurnal Teknologia, 3(1), hal. 102–110.

Syahputra, R., Yanris, G. J. dan Irmayani, D. (2022) ‘SVM and Naïve Bayes Algorithm Comparison for User Sentiment Analysis on Twitter’, Sinkron: Jurnal dan Penelitian Teknik Informatika, 7(2), hal. 671–678.

Syaputri, A.W., Irwandi, E. dan Mustakim (2020) ‘Naïve Bayes Algorithm for Classification of Student Major’s Specialization’, Journal of Intelligent Computing and Health Informatics, 1(1), hal. 15–19.

Windarti, M.A. dan Suradi, A. (2019) ‘Perbandingan Kinerja 6 Algoritme Klasifikasi Data Mining untuk Prediksi Masa Studi Mahasiswa’, Jurnal Telematika Vol, 1(1), hal. 14–30.

Zain, F.F. dan Sibaroni, Y. (2019) ‘Effectiveness of SVM Method by Naïve Bayes Weighting in Movie Review Classification’, Khazanah Informatika: Jurnal Ilmu Komputer dan Informatika, 5(2), hal. 108–114.

Normality test
Published
2023-01-31
How to Cite
Herumawan, C. and Anisa, E. (2023) “Klasifikasi Gender Berdasarkan Fingerprint Menggunakan Metode Naive Bayes Classifier”, Jurnal Asiimetrik: Jurnal Ilmiah Rekayasa & Inovasi, 5(1), pp. 53-62. doi: 10.35814/asiimetrik.v5i1.3801.
Section
Articles