Introduction to Surface Damage on Solar Panels with Feature Extraction using Statistical Methods

Authors

  • Ninuk Wiliani Universitas Pancasila
  • Titik Khawa Asia e University
  • Suzaimah Ramli National Defense University of Malaysia

DOI:

https://doi.org/10.35814/asiimetrik.v7i2.8298

Keywords:

introduction to damage, solar panel surface, texture feature extraction, statistical methods, energy efficiency

Abstract

Damage to the surface of solar panels, such as cracks, scratches, and stains, can reduce the energy efficiency produced. The surface of solar panels often experiences various types of damage such as cracks, scratches, stains, or being in good condition, which can affect energy absorption efficiency. The data used in this study consists of 4000 images covering various categories of surface conditions. The method used in this research is the Texture Feature Extraction Method with statistical indicators, namely Mean, Variance, Standard Deviation, Skewness, Kurtosis, and Entropy, to identify existing damage patterns. These features are then analyzed and classified to determine the type of damage on the panel surface. The feature extraction process generates data representations that depict the texture patterns of each surface condition category. This research aims to identify damage on the surface of solar panels using texture-based feature extraction techniques to support the efficient maintenance of solar panels.

Downloads

Download data is not yet available.

References

Barraz, Z. et al. (2025) ‘Fast And Automatic Solar Module Geo-Labeling For Optimized Large-Scale Photovoltaic Systems Inspection From UAV Thermal Imagery Using Deep Learning Segmentation’, Cleaner Engineering and Technology, 28, p. 101048. Available at: https://doi.org/10.1016/j.clet.2025.101048.

Hardiyanto, D. and Sartika, D.A. (2018) ‘Ekstraksi Fitur Citra Api Berbasis Ekstraksi Warna Pada Ruang Warna HSV dan RGB’, Fahma : Jurnal Informatika Komputer, Bisnis dan Manajemen, 16(3), pp. 1–12. Available at: https://doi.org/10.61805/fahma.v16i3.85.

Higuchi, Y. and Babasaki, T. (2017) ‘Classification Of Causes Of Broken Solar Panels In Solar Power Plant’, in 2017 IEEE International Telecommunications Energy Conference (IN℡EC). International Telecommunications Energy Conference (IN℡EC), Broadbeach, QLD, Australia: IEEE, pp. 127–132. Available at: https://doi.org/10.1109/INTLEC.2017.8214123.

Huang, J. et al. (2023) ‘Solar Panel Defect Detection Design Based On YOLO V5 Algorithm’, Heliyon, 9(8), p. e18826. Available at: https://doi.org/10.1016/j.heliyon.2023.e18826.

Kaesmetan, Y.R. (2019) ‘Perbandingan Ekstraksi Tekstur Citra Untuk Pemilihan Benih Kedelai Dengan Metode Statistik Orde I Dan Statistik Orde II’, HOAQ (High Education of Organization Archive Quality) : Jurnal Teknologi Informasi, 10(2), pp. 92–102. Available at: https://doi.org/10.52972/hoaq.vol10no2.p92-102.

Liantoni, F. and Santoso, A. (2018) ‘Penerapan Ekstraksi Ciri Statistik Orde Pertama Dengan Ekualisasi Histogram Pada Klasifikasi Telur Omega-3’, Simetris: Jurnal Teknik Mesin, Elektro dan Ilmu Komputer, 9(2), pp. 953–958. Available at: https://doi.org/10.24176/simet.v9i2.2476.

Malof, J.M. et al. (2015) ‘Automatic Solar Photovoltaic Panel Detection In Satellite Imagery’, in 2015 International Conference on Renewable Energy Research and Applications (ICRERA). 2015 International Conference on Renewable Energy Research and Applications (ICRERA), Palermo: IEEE, pp. 1428–1431. Available at: https://doi.org/10.1109/ICRERA.2015.7418643.

Malof, J.M. et al. (2016) ‘Automatic Detection Of Solar Photovoltaic Arrays In High Resolution Aerial Imagery’, Applied Energy, 183, pp. 229–240. Available at: https://doi.org/10.1016/j.apenergy.2016.08.191.

Musau, P.M., Ojwang, B.O. and Njuguna, C. (2019) ‘Automated Solar Panel Dry Cleaner for Arid and Semi-Arid Areas in Kenya’, in 2019 IEEE AFRICON. 2019 IEEE AFRICON, Accra, Ghana: IEEE, pp. 1–8. Available at: https://doi.org/10.1109/AFRICON46755.2019.9133918.

Nasution, M.Z. (2020) ‘Face Recognition based Feature Extraction using Principal Component Analysis (PCA)’, Journal Of Informatics And Telecommunication Engineering, 3(2), pp. 182–191. Available at: https://doi.org/10.31289/jite.v3i2.3132.

Rizki, R.D., Syaifudin, S. and Pratiwi, D. (2018) ‘Ekstraksi Fitur Berbasis Invariant Moment Padasistem Pengenalan Tulisan Tangan Berbahasa Inggris’, in Prosiding Seminar Nasional Pakar 2018. Seminar Nasional Pakar, Jakarta, Indonesia: Universitas Trisakti, pp. 205–210. Available at: https://doi.org/10.25105/pakar.v0i0.2626.

Subarnan, G.M., Damodaran, M. and Madhu, K. (2022) ‘A Review on Investigation of PV Solar Panel Surface Defects and MPPT Techniques’, Recent Advances in Electrical & Electronic Engineering, 15(8), pp. 607–620. Available at: https://doi.org/10.2174/2352096515666220620093933.

Sugiartha, I.G.R.A. (2017) ‘Ekstraksi Fitur Warna, Tekstur dan Bentuk untuk ClusteredBased Retrieval of Images (CLUE)’, in E-Proceedings KNS&I STIKOM Bali. Koverensi Nasional Sistem & Informatika, Bali, Indonesia: STIKOM Bali, pp. 613–618. Available at: https://knsi.stikom-bali.ac.id/index.php/eproceedings/article/view/112.

Xu, Y. et al. (2018) ‘Global Status Of Recycling Waste Solar Panels: A Review’, Waste Management, 75, pp. 450–458. Available at: https://doi.org/10.1016/j.wasman.2018.01.036.

Zyout, I. and Oatawneh, A. (2020) ‘Detection of PV Solar Panel Surface Defects using Transfer Learning of the Deep Convolutional Neural Networks’, in 2020 Advances in Science and Engineering Technology International Conferences (ASET). 2020 Advances in Science and Engineering Technology International Conferences (ASET), Dubai, United Arab Emirates: IEEE, pp. 1–4. Available at: https://doi.org/10.1109/ASET48392.2020.9118382.

Results of analysis for each feature

Downloads

Published

2025-07-31

Issue

Section

Articles

How to Cite

“Introduction to Surface Damage on Solar Panels with Feature Extraction using Statistical Methods” (2025) Jurnal Asiimetrik: Jurnal Ilmiah Rekayasa & Inovasi, 7(2), pp. 201–208. doi:10.35814/asiimetrik.v7i2.8298.